Differential persistence of transmitted HIV-1 drug resistance mutation classes

J Infect Dis. 2011 Apr 15;203(8):1174-81. doi: 10.1093/infdis/jiq167.

Abstract

Background: Transmitted human immunodeficiency virus type 1 (HIV-1) drug resistance (TDR) mutations can become replaced over time by emerging wild-type viral variants with improved fitness. The impact of class-specific mutations on this rate of mutation replacement is uncertain.

Methods: We studied participants with acute and/or early HIV infection and TDR in 2 cohorts (San Francisco, California, and São Paulo, Brazil). We followed baseline mutations longitudinally and compared replacement rates between mutation classes with use of a parametric proportional hazards model.

Results: Among 75 individuals with 195 TDR mutations, M184V/I became undetectable markedly faster than did nonnucleoside reverse-transcriptase inhibitor (NNRTI) mutations (hazard ratio, 77.5; 95% confidence interval [CI], 14.7-408.2; P<.0001), while protease inhibitor and NNRTI replacement rates were similar. Higher plasma HIV-1 RNA level predicted faster mutation replacement, but this was not statistically significant (hazard ratio, 1.71 log(10) copies/mL; 95% CI, .90-3.25 log(10) copies/mL; P=.11). We found substantial person-to-person variability in mutation replacement rates not accounted for by viral load or mutation class (P<.0001).

Conclusions: The rapid replacement of M184V/I mutations is consistent with known fitness costs. The long-term persistence of NNRTI and protease inhibitor mutations suggests a risk for person-to-person propagation. Host and/or viral factors not accounted for by viral load or mutation class are likely influencing mutation replacement and warrant further study.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adult
  • Anti-HIV Agents / pharmacology*
  • Cohort Studies
  • Drug Resistance, Viral / genetics*
  • Female
  • Genotype
  • HIV Infections / virology*
  • HIV-1 / drug effects*
  • HIV-1 / genetics
  • Humans
  • Male
  • Mutation
  • RNA, Viral / blood
  • Young Adult

Substances

  • Anti-HIV Agents
  • RNA, Viral