Identification of a functional docking site in the Rpn1 LRR domain for the UBA-UBL domain protein Ddi1

BMC Biol. 2011 May 31:9:33. doi: 10.1186/1741-7007-9-33.

Abstract

Background: The proteasome is a multi-subunit protein machine that is the final destination for cellular proteins that have been marked for degradation via an ubiquitin (Ub) chain appendage. These ubiquitylated proteins either bind directly to the intrinsic proteasome ubiqutin chain receptors Rpn10, Rpn13, or Rpt5, or are shuttled to the proteasome by Rad23, Dsk2, or Ddi1. The latter proteins share an Ub association domain (UBA) for binding poly-Ub chains and an Ub-like-domain (UBL) for binding to the proteasome. It has been proposed that shuttling receptors dock on the proteasome via Rpn1, but the precise nature of the docking site remains poorly defined.

Results: To shed light on the recruitment of shuttling receptors to the proteasome, we performed both site-directed mutagenesis and genetic screening to identify mutations in Rpn1 that disrupt its binding to UBA-UBL proteins. Here we demonstrate that delivery of Ub conjugates and docking of Ddi1 (and to a lesser extent Dsk2) to the proteasome are strongly impaired by an aspartic acid to alanine point mutation in the highly-conserved D517 residue of Rpn1. Moreover, degradation of the Ddi1-dependent proteasome substrate, Ufo1, is blocked in rpn1-D517A yeast cells. By contrast, Rad23 recruitment to the proteasome is not affected by rpn1-D517A.

Conclusions: These studies provide insight into the mechanism by which the UBA-UBL protein Ddi1 is recruited to the proteasome to enable Ub-dependent degradation of its ligands. Our studies suggest that different UBA-UBL proteins are recruited to the proteasome by distinct mechanisms.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Cell Cycle Proteins / genetics
  • Cell Cycle Proteins / metabolism
  • DNA-Binding Proteins / genetics
  • DNA-Binding Proteins / metabolism
  • F-Box Proteins / genetics
  • F-Box Proteins / metabolism
  • Genetic Testing
  • Mutagenesis, Site-Directed
  • Proteasome Endopeptidase Complex / chemistry
  • Proteasome Endopeptidase Complex / genetics*
  • Proteasome Endopeptidase Complex / metabolism
  • Saccharomyces cerevisiae / cytology
  • Saccharomyces cerevisiae / genetics
  • Saccharomyces cerevisiae / metabolism*
  • Saccharomyces cerevisiae Proteins / chemistry
  • Saccharomyces cerevisiae Proteins / genetics
  • Saccharomyces cerevisiae Proteins / metabolism*
  • Ubiquitin / metabolism
  • Ubiquitins / genetics
  • Ubiquitins / metabolism

Substances

  • Cell Cycle Proteins
  • DDI1 protein, S cerevisiae
  • DNA-Binding Proteins
  • DSK2 protein, S cerevisiae
  • F-Box Proteins
  • RAD23 protein, S cerevisiae
  • RPN1 protein, S cerevisiae
  • Saccharomyces cerevisiae Proteins
  • UFO1 protein, S cerevisiae
  • Ubiquitin
  • Ubiquitins
  • Proteasome Endopeptidase Complex