miR-31 promotes oncogenesis in intrahepatic cholangiocarcinoma cells via the direct suppression of RASA1

Exp Ther Med. 2013 Nov;6(5):1265-1270. doi: 10.3892/etm.2013.1311. Epub 2013 Sep 18.

Abstract

MicroRNAs (miRNAs) are involved in the pathogenesis of intrahepatic cholangiocarcinoma (ICC). However, the role of microRNA-31 (miR-31) in ICC has yet to be elucidated. In this study, we demonstrated that the expression of miR-31 was significantly upregulated in ICC tissues and the human ICC cell line HCCC-9810, when compared with that in normal adjacent tissues. Bioinformatic analysis and a dual-luciferase reporter assay revealed RAS p21 GTPase activating protein 1 (RASA1) to be a direct target of miR-31 in HCCC-9810 cells. Further investigation showed that the protein expression level of RASA1 was significantly decreased in ICC tissues, suggesting an inverse correlation between miR-31 and RASA1 expression during the tumorigenesis of ICC. Moreover, the forced downregulation of miR-31 by its inhibitor in HCCC-9810 cells significantly inhibited cell proliferation and promoted cell apoptosis. However, when the cells were cotransfected with miR-31 inhibitor and RASA1-specific small interfering RNA (siRNA), these changes were attenuated. Further analysis of the molecular mechanism showed that the activity of the RAS-mitogen-activated protein kinase (MAPK) signaling pathway was significantly decreased in miR-31-downregulated HCCC-8910 cells, while cotransfection with miR-31 inhibitor and RASA1-specific siRNA attenuated this effect. These results indicate that the downregulation of RASA1 by miR-31 promoted cellular proliferation and inhibited cellular apoptosis, partially by upregulating the activity of the RAS-MAPK signaling pathway in ICC. In conclusion, the present study revealed important regulatory functions of miR-31 and RASA1 in ICC, indicating that miR-31 and RASA1 may become promising diagnostic and/or therapeutic targets for ICC.

Keywords: RAS p21 GTPase activating protein 1; apoptosis; intrahepatic cholangiocarcinoma; microRNA-31; proliferation.