[Analysis of the resistance mechanism and homology of carbapenems-resistant Pseudomonas aeruginosa]

Zhonghua Shao Shang Za Zhi. 2014 Feb;30(1):15-20.
[Article in Chinese]

Abstract

Objective: To study the resistance mechanism and homology of carbapenems-resistant Pseudomonas aeruginosa (PA).

Methods: A total of 812 strains of PA (identified) were isolated from sputum, urine, blood, pus, and drainage of patients with burn, severe pneumonia, diabetes, chronic obstructive pneumonia, myocarditis, liver transplantation, or brainstem hemorrhage hospitalized from January to September 2012. Drug resistance of the 812 strains of PA to 15 antibiotics commonly used in clinic, including piperacillin, imipenem, etc., was tested using the automatic microorganism identifying and drug sensitivity analyzer. Among the carbapenems-resistant PA isolates, synergism test with imipenem-ethylene diamine tetraacetic acid (EDTA) and enhancement test with imipenem-EDTA and ceftazidime-EDTA were used to screen metallo-β-lactamase (MBL)-producing strains; modified Hodge test was used to screen strains producing Klebsiella pneumoniae carbapenemases (KPC); the carbapenemase gene, plasmid mediated quinolone resistant (PMQR) gene, and mobile genetic elements (MGE) were detected by polymerase chain reaction (PCR). In addition, a comparative analysis of the PMQR gene carrying level between the carbapenemase gene positive strains and carbapenemase gene negative strains was carried out. The repetitive consensus sequence of Enterobacteriaceae genome PCR (ERIC-PCR) was carried out for gene typing. Moreover, the source and resistance genes of strains with the same genotype were analyzed. Data were processed with Fisher's exact probability test.

Results: The sensitive rates of the 812 strains of PA to ceftriaxone and trimethoprim-sulfamethoxazole were high, respectively 83.07% and 88.19%, and those of the other antibiotics ranged from 17.30% to 55.18%. Twenty-four carbapenems-resistant PA strains were screened, including 11 MBL-producing strains and 2 KPC-producing strains. Eleven carbapenems-resistant PA strains were found to harbor the blaVIM-2 gene, accounting for 45.83%; 2 carbapenems-resistant PA strains carried the blaKPC-2 gene, accounting for 8.33%. Fourteen carbapenems-resistant PA strains only harbored the PMQR gene acc (6')-Ib-cr, accounting for 58.33%; 3 carbapenems-resistant PA strains (12.50%) harbored the PMQR genes acc (6')-Ib-cr and qnr, including 1 strain with qnr A1 and 2 strains with qnr B4. Ten carbapenems-resistant PA strains carried the MGE gene ISCR1, accounting for 41.67%; 6 carbapenems-resistant PA strains carried the MGE gene ISEcp1, accounting for 25.00%. In addition, 3 carbapenems-resistant PA strains co-harbored the MGE genes ISCR1 and ISEcp1 (accounting for 12.50%), while only 1 carbapenems-resistant PA strain co-harbored the MGE genes class 1 integron and ISEcp1, accounting for 4.17%. Twelve out of the 13 carbapenemase gene positive strains carried one or two PMQR gene (s), which was significantly higher than that of the carbapenemase gene negative strains (with only five strains harboring one PMQR gene, P = 0.023). The 24 carbapenems-resistant PA strains were classified into 6 genotypes by the ERIC-PCR. Thirteen strains (accounting for 54.17%), mainly isolated from pus and blood samples, which were collected from burn department, were in genotype A. Eight out of the 13 strains harbored genes blaVIM-2, acc (6')-Ib-cr, and ISCR1. Five strains (accounting for 20.83%), mainly isolated from sputum samples which were collected from ICU, were in genotype B. Only 2 out of the 5 strains co-harbored the carbapenemase gene, PMQR gene, and MGE gene. There were respectively 2 strains in genotypes C and D, both accounting for 8.33%; the strains in different pattern were isolated from different wards, and they harbored diverse resistance genes. There were respectively 1 strain in genotypes E and F, both accounting for 4.17%.

Conclusions: The resistance mechanism of PA to carbapenems is mainly mediated by the VIM-2 type MBL in our hospital during 2012, followed by KPC-2 type carbapenemase, and the prevalent genotype is type A. The carbapenemase genes and PMQR genes co-carrying phenomenon exists among these strains of PA, which disseminated by clones.

MeSH terms

  • Anti-Bacterial Agents / pharmacology*
  • Bacterial Proteins / genetics
  • Carbapenems / pharmacology*
  • DNA, Bacterial
  • Drug Resistance, Bacterial*
  • Humans
  • Microbial Sensitivity Tests
  • Pseudomonas aeruginosa / drug effects*
  • Pseudomonas aeruginosa / genetics
  • Pseudomonas aeruginosa / isolation & purification
  • beta-Lactamases / genetics

Substances

  • Anti-Bacterial Agents
  • Bacterial Proteins
  • Carbapenems
  • DNA, Bacterial
  • beta-Lactamases
  • carbapenemase