Cell and molecular determinants of in vivo efficacy of the BH3 mimetic ABT-263 against pediatric acute lymphoblastic leukemia xenografts

Clin Cancer Res. 2014 Sep 1;20(17):4520-31. doi: 10.1158/1078-0432.CCR-14-0259. Epub 2014 Jul 10.

Abstract

Purpose: Predictive biomarkers are required to identify patients who may benefit from the use of BH3 mimetics such as ABT-263. This study investigated the efficacy of ABT-263 against a panel of patient-derived pediatric acute lymphoblastic leukemia (ALL) xenografts and utilized cell and molecular approaches to identify biomarkers that predict in vivo ABT-263 sensitivity.

Experimental design: The in vivo efficacy of ABT-263 was tested against a panel of 31 patient-derived ALL xenografts composed of MLL-, BCP-, and T-ALL subtypes. Basal gene expression profiles of ALL xenografts were analyzed and confirmed by quantitative RT-PCR, protein expression and BH3 profiling. An in vitro coculture assay with immortalized human mesenchymal cells was utilized to build a predictive model of in vivo ABT-263 sensitivity.

Results: ABT-263 demonstrated impressive activity against pediatric ALL xenografts, with 19 of 31 achieving objective responses. Among BCL2 family members, in vivo ABT-263 sensitivity correlated best with low MCL1 mRNA expression levels. BH3 profiling revealed that resistance to ABT-263 correlated with mitochondrial priming by NOXA peptide, suggesting a functional role for MCL1 protein. Using an in vitro coculture assay, a predictive model of in vivo ABT-263 sensitivity was built. Testing this model against 11 xenografts predicted in vivo ABT-263 responses with high sensitivity (50%) and specificity (100%).

Conclusion: These results highlight the in vivo efficacy of ABT-263 against a broad range of pediatric ALL subtypes and shows that a combination of in vitro functional assays can be used to predict its in vivo efficacy.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Aniline Compounds / administration & dosage*
  • Apoptosis / drug effects
  • Child
  • Gene Expression Regulation, Neoplastic / drug effects
  • Humans
  • Myeloid Cell Leukemia Sequence 1 Protein / biosynthesis
  • Neoplasm Proteins / biosynthesis*
  • Precursor Cell Lymphoblastic Leukemia-Lymphoma / drug therapy*
  • Precursor Cell Lymphoblastic Leukemia-Lymphoma / genetics*
  • Precursor Cell Lymphoblastic Leukemia-Lymphoma / pathology
  • Proto-Oncogene Proteins c-bcl-2 / genetics
  • RNA, Messenger / biosynthesis
  • Sulfonamides / administration & dosage*
  • Xenograft Model Antitumor Assays

Substances

  • Aniline Compounds
  • MCL1 protein, human
  • Myeloid Cell Leukemia Sequence 1 Protein
  • Neoplasm Proteins
  • Proto-Oncogene Proteins c-bcl-2
  • RNA, Messenger
  • Sulfonamides
  • navitoclax