Development of genetic systems for the mycobacteria

Acta Leprol. 1989:7 Suppl 1:203-7.

Abstract

Requisite to a detailed understanding of the molecular basis of bacterial pathogenesis is a genetic system which allows for the transfer, mutation, and expression of specific genes. Genetic analysis of mycobacteria has been exceedingly difficult since the mycobacteria grow slowly and no natural efficient method of gene transfer within the pathogenic has thus far been found. Using a molecular genetic approach, we have developed both the vectors and the methodology for efficient gene transfer in the mycobacteria. Initially, a novel of type of mycobacteriophage vector was developed, termed a shuttle phasmid. This hybrid shuttle vector replicates in Escherichia coli as a plasmid and in mycobacteria as a phage, capable of introducing foreign DNA into a wide variety of mycobacterial species. A set of shuttle phasmids, constructed from a temperate mycobacteriophage, retained their ability to lysogenize their mycobacterial hosts and could thus introduce foreign DNA stably into mycobacterial cells. An E. coli gene conferring kanamycin-resistance was cloned into these vectors and shown to express in the mycobacteria, thus providing the first selectable marker gene for subsequent genetic studies. Using kanamycin-resistance gene as a selection, the M. fortuitum plasmid pAL5000 replicon, and electroporation; a plasmid transformation system has been developed for both M. smegmatis and BCG. We now plan to use these phage and plasmid systems to analyze, genetically, the virulence attributes of the pathogenic mycobacteria. In addition, by introducing and expressing foreign antigens in BCG, we hope to develop a novel recombinant multi-vaccine vehicle capable of conferring immunity to a variety of bacterial, viral, and parasitic pathogens.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.
  • Review

MeSH terms

  • BCG Vaccine / isolation & purification
  • Bacterial Vaccines / isolation & purification
  • Genes, Bacterial
  • Genetic Vectors
  • Mycobacterium / genetics*
  • Mycobacterium / immunology
  • Mycobacterium / pathogenicity
  • Plasmids
  • Transformation, Genetic
  • Virulence

Substances

  • BCG Vaccine
  • Bacterial Vaccines