Paramecium: a promising non-animal bioassay to study the effect of 808 nm infrared diode laser photobiomodulation

Photomed Laser Surg. 2015 Jan;33(1):35-40. doi: 10.1089/pho.2014.3829. Epub 2015 Jan 2.

Abstract

Objective: Photobiostimulation and photobiomodulation (PBM) are terms applied to the manipulation of cellular behavior using low intensity light sources, which works on the principle of inducing a biological response through energy transfer. The aim of this investigation was to identify a laboratory assay to test the effect of an infrared diode laser light (808 nm) on cell fission rate.

Materials and methods: Sixty cells of Paramecium primaurelia were divided in two groups of 30. The first group (test group) was irradiated, at a temperature of 24°C, for 50 sec by a 808 nm diode laser with a flat top handpiece [1 cm of spot diameter, 1 W in continuous wave (CW), 50 sec irradiation time, 64 J/cm(2) of fluence]. The second group (control group) received no laser irradiation. All cells were transferred onto a depression slide, fed, and incubated in a moist chamber at a temperature of 24°C. The cells were exposed and monitored for 10 consecutive fission rates. Changes in temperature and pH were also evaluated.

Results: The exposed cells had a fission rate rhythm faster than the control cells, showing a binary fission significantly (p<0.05) shorter than unexposed cells. No significant effects of laser irradiation on pH and temperature of Paramecium's lettuce infusion medium were observed.

Conclusions: The 808 nm infrared diode laser light, at the irradiation parameters used in our work, results in a precocious fission rate in P. primaurelia cells, probably through an increase in metabolic activity, secondary to an energy transfer.

MeSH terms

  • Biological Assay / methods*
  • Energy Transfer
  • Lasers, Semiconductor*
  • Low-Level Light Therapy / instrumentation*
  • Paramecium / radiation effects*