Autophagy Inhibition Dysregulates TBK1 Signaling and Promotes Pancreatic Inflammation

Cancer Immunol Res. 2016 Jun;4(6):520-30. doi: 10.1158/2326-6066.CIR-15-0235. Epub 2016 Apr 11.

Abstract

Autophagy promotes tumor progression downstream of oncogenic KRAS, yet also restrains inflammation and dysplasia through mechanisms that remain incompletely characterized. Understanding the basis of this paradox has important implications for the optimal targeting of autophagy in cancer. Using a mouse model of cerulein-induced pancreatitis, we found that loss of autophagy by deletion of Atg5 enhanced activation of the IκB kinase (IKK)-related kinase TBK1 in vivo, associated with increased neutrophil and T-cell infiltration and PD-L1 upregulation. Consistent with this observation, pharmacologic or genetic inhibition of autophagy in pancreatic ductal adenocarcinoma cells, including suppression of the autophagy receptors NDP52 or p62, prolonged TBK1 activation and increased expression of CCL5, IL6, and several other T-cell and neutrophil chemotactic cytokines in vitro Defective autophagy also promoted PD-L1 upregulation, which is particularly pronounced downstream of IFNγ signaling and involves JAK pathway activation. Treatment with the TBK1/IKKε/JAK inhibitor CYT387 (also known as momelotinib) not only inhibits autophagy, but also suppresses this feedback inflammation and reduces PD-L1 expression, limiting KRAS-driven pancreatic dysplasia. These findings could contribute to the dual role of autophagy in oncogenesis and have important consequences for its therapeutic targeting. Cancer Immunol Res; 4(6); 520-30. ©2016 AACR.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • Acute Disease
  • Adenocarcinoma / metabolism
  • Adenocarcinoma / pathology
  • Animals
  • Autophagy / physiology*
  • Autophagy-Related Protein 5 / genetics
  • B7-H1 Antigen / antagonists & inhibitors
  • B7-H1 Antigen / biosynthesis
  • Benzamides / pharmacology
  • Cell Transformation, Neoplastic / drug effects
  • Ceruletide
  • Chemokine CCL5 / antagonists & inhibitors
  • Chemokine CCL5 / metabolism
  • Cytokines / metabolism
  • Enzyme Activation / genetics
  • Gene Deletion
  • Mice
  • Pancreatic Neoplasms / metabolism
  • Pancreatic Neoplasms / pathology
  • Pancreatitis / chemically induced
  • Pancreatitis / genetics
  • Pancreatitis / metabolism*
  • Pancreatitis / pathology
  • Pancreatitis / prevention & control
  • Protein Serine-Threonine Kinases / metabolism*
  • Proto-Oncogene Proteins p21(ras) / genetics
  • Pyrimidines / pharmacology
  • Signal Transduction / physiology
  • Tumor Cells, Cultured

Substances

  • Atg5 protein, mouse
  • Autophagy-Related Protein 5
  • B7-H1 Antigen
  • Benzamides
  • Ccl5 protein, mouse
  • Cd274 protein, mouse
  • Chemokine CCL5
  • Cytokines
  • Pyrimidines
  • N-(cyanomethyl)-4-(2-((4-(4-morpholinyl)phenyl)amino)-4-pyrimidinyl)benzamide
  • Ceruletide
  • Tbk1 protein, mouse
  • Protein Serine-Threonine Kinases
  • Hras protein, mouse
  • Proto-Oncogene Proteins p21(ras)