Self-Assembled Templates of Aromatic Pentapeptides for Synthesis of CdS Quantum-Dots to Detect the Trace Amounts of Hg(2+) in Aqueous Solutions

J Oleo Sci. 2016 May 1;65(5):431-9. doi: 10.5650/jos.ess15280. Epub 2016 Apr 15.

Abstract

Molecular self-assembly has become a popular tool to prepare nanomaterials with potential applications, such as ion-responsive detection of Hg(2+) in aqueous solutions. In this study, FFACD aromatic pentapeptides, whose N-terminuses were protected by carboxyl (Ac-FFACD) or a 9-fluorenylmethoxycarbonyl group (Fmoc-FFACD), were chosen as building blocks to produce nanostructures in solutions. Based on the preliminary determination of the critical aggregation concentration (CAC) of Ac-FFACD and Fmoc-FFACD aromatic pentapeptides in water, the order of magnitude of which is 10(-5) mol·L(-1), self-assembled spiral and networked nanowires can be easily obtained over a range of concentrations. These nanowires were characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), and atomic force microscopy (AFM). The self-assembled spiral and networked nanowires were designed to be used as templates for preparing CdS quantum dots (QDs) in-situ at room temperature. The peptide-functionalized, nanowire-encapsulated CdS QDs can be used for rapid, sensitive, and selective detection of trace amounts of mercuric ions (Hg(2+)) in aqueous solutions. This method enables rapid, linear detection (the linear correlation coefficients are 0.9972 of ΔF = 257.09 + 3.58 cHg(2+) for Ac-FFACD and 0.9994 of ΔF = 48.13 + 32.96 cHg(2+) for Fmoc-FFACD) with the Hg(2+) limit of detection at 300.85 ng·L(-1) and 32.09 ng·L(-1) for Ac-FFACD and Fmoc-FFACD, respectively. The supramolecular, self-assembled nanowires, fabricated from the two aromatic pentapeptides and having encapsulated QDs, exhibit superior properties attributable to the large loading capacity and the coordination sites of these peptides with Hg(2+). These structures can serve as novel Hg(2+) sensors and have possible applications for detection of various targets in scientific and engineering systems.

MeSH terms

  • Cadmium Compounds / chemistry*
  • Mercury / analysis*
  • Molecular Structure
  • Odorants*
  • Oligopeptides / chemistry*
  • Quantum Dots*
  • Solutions
  • Sulfides / chemistry*
  • Water Pollutants, Chemical / analysis*

Substances

  • Cadmium Compounds
  • Oligopeptides
  • Solutions
  • Sulfides
  • Water Pollutants, Chemical
  • cadmium sulfide
  • Mercury