Lattice Computation of the Nucleon Scalar Quark Contents at the Physical Point

Phys Rev Lett. 2016 Apr 29;116(17):172001. doi: 10.1103/PhysRevLett.116.172001. Epub 2016 Apr 28.

Abstract

We present a QCD calculation of the u, d, and s scalar quark contents of nucleons based on 47 lattice ensembles with N_{f}=2+1 dynamical sea quarks, 5 lattice spacings down to 0.054 fm, lattice sizes up to 6 fm, and pion masses down to 120 MeV. Using the Feynman-Hellmann theorem, we obtain f_{ud}^{N}=0.0405(40)(35) and f_{s}^{N}=0.113(45)(40), which translates into σ_{πN}=38(3)(3) MeV, σ_{sN}=105(41)(37) MeV, and y_{N}=0.20(8)(8) for the sigma terms and the related ratio, where the first errors are statistical and the second errors are systematic. Using isospin relations, we also compute the individual up and down quark contents of the proton and neutron (results in the main text).