The Diversification of Plant NBS-LRR Defense Genes Directs the Evolution of MicroRNAs That Target Them

Mol Biol Evol. 2016 Oct;33(10):2692-705. doi: 10.1093/molbev/msw154. Epub 2016 Aug 10.

Abstract

High expression of plant nucleotide binding site leucine-rich repeat (NBS-LRR) defense genes is often lethal to plant cells, a phenotype perhaps associated with fitness costs. Plants implement several mechanisms to control the transcript level of NBS-LRR defense genes. As negative transcriptional regulators, diverse miRNAs target NBS-LRRs in eudicots and gymnosperms. To understand the evolutionary benefits of this miRNA-NBS-LRR regulatory system, we investigated the NBS-LRRs of 70 land plants, coupling this analysis with extensive small RNA data. A tight association between the diversity of NBS-LRRs and miRNAs was found. The miRNAs typically target highly duplicated NBS-LRRs In comparison, families of heterogeneous NBS-LRRs were rarely targeted by miRNAs in Poaceae and Brassicaceae genomes. We observed that duplicated NBS-LRRs from different gene families periodically gave birth to new miRNAs. Most of these newly emerged miRNAs target the same conserved, encoded protein motif of NBS-LRRs, consistent with a model of convergent evolution for these miRNAs. By assessing the interactions between miRNAs and NBS-LRRs, we found nucleotide diversity in the wobble position of the codons in the target site drives the diversification of miRNAs. Taken together, we propose a co-evolutionary model of plant NBS-LRRs and miRNAs hypothesizing how plants balance the benefits and costs of NBS-LRR defense genes.

Keywords: NBS-LRR; disease resistance gene; microRNA.; plant.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Binding Sites
  • Biological Evolution
  • Brassicaceae / genetics
  • Databases, Nucleic Acid
  • Disease Resistance / genetics
  • Evolution, Molecular*
  • Gene Expression Regulation, Plant
  • Genes, Plant*
  • Genetic Variation
  • MicroRNAs / genetics*
  • NLR Proteins / genetics*
  • Nucleotides / genetics
  • Plant Proteins / genetics
  • Plants / genetics*

Substances

  • MicroRNAs
  • NLR Proteins
  • Nucleotides
  • Plant Proteins