Antitherapeutic antibody-mediated hepatotoxicity of recombinant human Apo2L/TRAIL in the cynomolgus monkey

Cell Death Dis. 2016 Aug 11;7(8):e2338. doi: 10.1038/cddis.2016.241.

Abstract

Apo2L/TRAIL is a member of the tumor necrosis factor superfamily and an important inducer of apoptosis. Recombinant human (rhu) Apo2L/TRAIL has been attractive as a potential cancer therapeutic because many types of tumor cells are sensitive to its apoptosis-inducing effects. Nonclinical toxicology studies were conducted to evaluate the safety of rhuApo2L/TRAIL for possible use in humans. The cynomolgus monkey was chosen for this safety assessment based on high protein sequence homology between human and cynomolgus Apo2L/TRAIL and comparable expression of their receptors. Although hepatotoxicity was observed in repeat-dose monkey studies with rhuApo2L/TRAIL, all animals that displayed hepatotoxicity had developed antitherapeutic antibodies (ATAs). The cynomolgus ATAs augmented the cytotoxicity of rhuApo2L/TRAIL but not of its cynomolgus counterpart. Of note, human and cynomolgus Apo2L/TRAIL differ by four amino acids, three of which are surface-exposed. In vivo studies comparing human and cynomolgus Apo2L/TRAIL supported the conclusion that these distinct amino acids served as epitopes for cross-species ATAs, capable of crosslinking rhuApo2L/TRAIL and thus triggering hepatocyte apoptosis. We describe a hapten-independent mechanism of immune-mediated, drug-related hepatotoxicity - in this case - associated with the administration of a human recombinant protein in monkeys. The elucidation of this mechanism enabled successful transition of rhuApo2L/TRAIL into human clinical trials.

MeSH terms

  • Animals
  • Antibodies / therapeutic use*
  • Antibodies / toxicity*
  • Disease Models, Animal
  • Humans
  • Jurkat Cells
  • Kidney / drug effects
  • Kidney / pathology
  • Liver / drug effects
  • Liver / pathology
  • Macaca fascicularis
  • Recombinant Proteins / therapeutic use*
  • Recombinant Proteins / toxicity*
  • Species Specificity
  • TNF-Related Apoptosis-Inducing Ligand / therapeutic use*
  • TNF-Related Apoptosis-Inducing Ligand / toxicity*

Substances

  • Antibodies
  • Recombinant Proteins
  • TNF-Related Apoptosis-Inducing Ligand