Properties of a human insulin receptor with a COOH-terminal truncation. II. Truncated receptors have normal kinase activity but are defective in signaling metabolic effects

J Biol Chem. 1988 Jun 25;263(18):8912-7.

Abstract

We have previously shown that a mutant human insulin receptor with a COOH-terminal 43-amino acid deletion (HIR delta CT), when expressed in Rat 1 fibroblasts, binds insulin normally, autophosphorylates, and undergoes endocytosis after insulin binding in a manner comparable to the normal human insulin receptor (HIRc). In this paper we have examined the biologic activity of the truncated and normal insulin receptors. In vitro, the HIR delta CT receptors caused a 1.8-fold greater phosphorylation of a Glu4/Tyr1 polypeptide than did the HIRc receptors, but the two receptor types were nearly equivalent in their ability to phosphorylate a src-derived peptide. Furthermore, insulin preactivation of HIRc and HIR delta CT receptors in intact cells led to equivalent stimulation of tyrosine kinase activity as subsequently determined for histone in vitro. Expression of HIRc receptors in cells led to enhanced sensitivity to insulin of 2-deoxy-D-glucose uptake and glycogen synthase activation. This increased sensitivity was proportional to receptor number at low (Ro = 6400) but not at high (Ro = 1.25 X 10(6] levels of receptor expression. However, expression of HIR delta CT receptors (Ro = 2.5 X 10(5] led to little, if any, increase in insulin sensitivity of either 2-deoxy-D-glucose uptake or glycogen synthase activation. Furthermore, compared with HIRc cells, HIR delta CT cells respond poorly to an agonistic monoclonal antibody specific for the human insulin receptor. In conclusion, the HIR delta CT receptor retains intact protein kinase activity in vitro. Despite this, however, the receptor displays low activity in mediating the metabolic effects of insulin.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Cell Line
  • Chromosome Deletion
  • Deoxyglucose / metabolism
  • Genes
  • Glycogen Synthase / metabolism
  • Humans
  • Insulin / pharmacology
  • Kinetics
  • Mutation
  • Phosphorylation
  • Protein-Tyrosine Kinases / genetics
  • Protein-Tyrosine Kinases / metabolism*
  • Receptor, Insulin / genetics
  • Receptor, Insulin / metabolism*
  • Transfection

Substances

  • Insulin
  • Deoxyglucose
  • Glycogen Synthase
  • Protein-Tyrosine Kinases
  • Receptor, Insulin