Chest compliance is altered by static compression and decompression as revealed by changes in anteroposterior chest height during CPR using the ResQPUMP in a human cadaver model

Resuscitation. 2017 Jul:116:56-59. doi: 10.1016/j.resuscitation.2017.04.032. Epub 2017 Apr 28.

Abstract

Introduction: Chest compliance plays a fundamental role in the generation of circulation during cardiopulmonary resuscitation (CPR). To study potential changes in chest compliance over time, anterior posterior (AP) chest height measurements were performed on newly deceased (never frozen) human cadavers during CPR before and after 5min of automated CPR. We tested the hypothesis that after 5min of CPR chest compliance would be significantly increased.

Methods: Static compression (30, 40, and 50kg) and decompression forces (-10, -15kg) were applied with a manual ACD-CPR device (ResQPUMP, ZOLL) before and after 5min of automated CPR. Lateral chest x-rays were obtained with multiple reference markers to assess changes in AP distance.

Results: In 9 cadavers, changes (mean±SD) in the AP distance (cm) during the applied forces were 2.1±1.2 for a compression force of 30kg, 2.9±1.3 for 40kg, 4.3±1.0 for 50kg, 1.0±0.8 for a decompression force of -10kg and 1.8±0.6 for -15kg. After 5min of automated CPR, AP excursion distances were significantly greater (p<0.05). AP distance increased to 3.7±1.4 for a compression force of 30kg, 4.9±1.6 for 40kg, 6.3±1.9 for 50kg, 2.3±0.9 for -10kg of lift and 2.7±1.1 for -15kg of lift.

Conclusions: These data demonstrate chest compliance increases significantly over time as demonstrated by the significant increase in the measured AP distance after 5min of CPR. These findings suggest that adjustments in compression and decompression forces may be needed to optimize CPR over time.

Keywords: Active compression decompression CPR; Cardiac arrest; Cardiopulmonary resuscitation; Chest; Compliance.

MeSH terms

  • Cadaver
  • Cardiopulmonary Resuscitation / instrumentation*
  • Decompression*
  • Female
  • Heart Arrest / therapy
  • Humans
  • Lung Compliance / physiology*
  • Male
  • Pressure*
  • Thoracic Wall / physiopathology