Human Induced Pluripotent Stem Cell-Derived Endothelial Cells for Three-Dimensional Microphysiological Systems

Tissue Eng Part C Methods. 2017 Aug;23(8):474-484. doi: 10.1089/ten.TEC.2017.0133.

Abstract

Microphysiological systems (MPS), or "organ-on-a-chip" platforms, aim to recapitulate in vivo physiology using small-scale in vitro tissue models of human physiology. While significant efforts have been made to create vascularized tissues, most reports utilize primary endothelial cells that hinder reproducibility. In this study, we report the use of human induced pluripotent stem cell-derived endothelial cells (iPS-ECs) in developing three-dimensional (3D) microvascular networks. We established a CDH5-mCherry reporter iPS cell line, which expresses the vascular endothelial (VE)-cadherin fused to mCherry. The iPS-ECs demonstrate physiological functions characteristic of primary endothelial cells in a series of in vitro assays, including permeability, response to shear stress, and the expression of endothelial markers (CD31, von Willibrand factor, and endothelial nitric oxide synthase). The iPS-ECs form stable, perfusable microvessels over the course of 14 days when cultured within 3D microfluidic devices. We also demonstrate that inhibition of TGF-β signaling improves vascular network formation by the iPS-ECs. We conclude that iPS-ECs can be a source of endothelial cells in MPS providing opportunities for human disease modeling and improving the reproducibility of 3D vascular networks.

Keywords: endothelial cells; induced pluripotent stem cells; microfluidics; vascularization.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Angiogenesis Inhibitors / pharmacology
  • Antigens, CD / metabolism
  • Cadherins / metabolism
  • Cell Culture Techniques / methods*
  • Cell Differentiation / drug effects
  • Cell Line
  • Cell Separation
  • Endothelial Cells / cytology*
  • Endothelial Cells / drug effects
  • Humans
  • Induced Pluripotent Stem Cells / cytology*
  • Induced Pluripotent Stem Cells / drug effects
  • Microfluidics
  • Neovascularization, Physiologic* / drug effects
  • Phenotype
  • Shear Strength
  • Small Molecule Libraries / pharmacology
  • Transforming Growth Factor beta / pharmacology

Substances

  • Angiogenesis Inhibitors
  • Antigens, CD
  • Cadherins
  • Small Molecule Libraries
  • Transforming Growth Factor beta
  • cadherin 5