Enhanced immunostimulatory activity of in silico discovered agonists of Toll-like receptor 2 (TLR2)

Biochim Biophys Acta Gen Subj. 2017 Nov;1861(11 Pt A):2680-2689. doi: 10.1016/j.bbagen.2017.07.011. Epub 2017 Jul 19.

Abstract

Background: Emergent therapies in anticancer vaccination use Toll-like receptors (TLRs) agonists as dendritic cell (DC) vaccine adjuvants. DCs from the patient are isolated, stimulated with TLR agonists and tumor antigens ex vivo and then infused back into the patient. Although some TLR ligands have been tested in clinical trials, novel TLR agonists with improved immunomodulatory properties are essential to optimize treatment success. We report on the discovery of small-molecule TLR2 agonists, with favorable properties as synthetic adjuvants.

Methods: We performed a shape- and featured-based similarity virtual screening against a commercially available compound library. The selected virtual hits were experimentally tested in TLR2-reporter cells and their activity in phagocytes and DCs was characterized. A binding model of the compounds to TLR2 (docking studies) was proposed.

Results: Through a virtual screening approach against a library of three million compounds four virtual hits (AG1, AG2, AG3, AG4) were found to synergistically augment the NF-kB activation induced by the lipopeptide ligand Pam3CSK4 in luciferase reporter assays using HEK293-TLR2 cells. Biacore experiments indicated that AG1-AG4 are ago-allosteric modulators of TLR2 and AG2 bound TLR2 with high affinity (KD 0.8μM). The compounds induced TNF-α production in human peripheral blood mononuclear cells (PBMCs) and they activated DCs as indicated by IL-12 production and upregulation of CD83/CD86.

Conclusions: Following a combined in silico/in vitro approach we have discovered TLR2-agonists (AG1-AG4) that activate human and mouse immune cells.

General significance: We introduce four novel TLR2 ago-allosteric modulators that stimulate myeloid cell activity and constitute promising candidates as synthetic adjuvants.

Keywords: Adjuvants; Cancer vaccination; Dendritic cell; Inflammation; Toll-like receptor; Virtual screening.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adjuvants, Immunologic / chemistry*
  • Adjuvants, Immunologic / isolation & purification
  • Adjuvants, Immunologic / therapeutic use
  • Animals
  • Cancer Vaccines / chemistry*
  • Cancer Vaccines / immunology
  • Cancer Vaccines / therapeutic use
  • Cytokines / biosynthesis
  • Dendritic Cells / immunology
  • HEK293 Cells
  • Humans
  • Leukocytes, Mononuclear / drug effects
  • Ligands
  • Mice
  • Molecular Docking Simulation
  • Neoplasms / drug therapy*
  • Neoplasms / genetics
  • Neoplasms / pathology
  • Small Molecule Libraries / chemistry*
  • Small Molecule Libraries / isolation & purification
  • Small Molecule Libraries / therapeutic use
  • Toll-Like Receptor 2 / agonists*
  • Toll-Like Receptor 2 / chemistry
  • Toll-Like Receptor 2 / genetics
  • User-Computer Interface

Substances

  • Adjuvants, Immunologic
  • Cancer Vaccines
  • Cytokines
  • Ligands
  • Small Molecule Libraries
  • TLR2 protein, human
  • Toll-Like Receptor 2