Disease-specific biases in alternative splicing and tissue-specific dysregulation revealed by multitissue profiling of lymphocyte gene expression in type 1 diabetes

Genome Res. 2017 Nov;27(11):1807-1815. doi: 10.1101/gr.217984.116. Epub 2017 Oct 12.

Abstract

Genome-wide association studies (GWAS) have identified multiple, shared allelic associations with many autoimmune diseases. However, the pathogenic contributions of variants residing in risk loci remain unresolved. The location of the majority of shared disease-associated variants in noncoding regions suggests they contribute to risk of autoimmunity through effects on gene expression in the immune system. In the current study, we test this hypothesis by applying RNA sequencing to CD4+, CD8+, and CD19+ lymphocyte populations isolated from 81 subjects with type 1 diabetes (T1D). We characterize and compare the expression patterns across these cell types for three gene sets: all genes, the set of genes implicated in autoimmune disease risk by GWAS, and the subset of these genes specifically implicated in T1D. We performed RNA sequencing and aligned the reads to both the human reference genome and a catalog of all possible splicing events developed from the genome, thereby providing a comprehensive evaluation of the roles of gene expression and alternative splicing (AS) in autoimmunity. Autoimmune candidate genes displayed greater expression specificity in the three lymphocyte populations relative to other genes, with significantly increased levels of splicing events, particularly those predicted to have substantial effects on protein isoform structure and function (e.g., intron retention, exon skipping). The majority of single-nucleotide polymorphisms within T1D-associated loci were also associated with one or more cis-expression quantitative trait loci (cis-eQTLs) and/or splicing eQTLs. Our findings highlight a substantial, and previously underrecognized, role for AS in the pathogenesis of autoimmune disorders and particularly for T1D.

Publication types

  • Comparative Study
  • Research Support, Non-U.S. Gov't
  • Research Support, N.I.H., Extramural

MeSH terms

  • Adult
  • Alternative Splicing*
  • CD4-Positive T-Lymphocytes / chemistry
  • CD4-Positive T-Lymphocytes / immunology
  • CD8-Positive T-Lymphocytes / chemistry
  • CD8-Positive T-Lymphocytes / immunology
  • Diabetes Mellitus, Type 1 / genetics*
  • Diabetes Mellitus, Type 1 / immunology
  • Female
  • Gene Expression Profiling / methods*
  • Gene Regulatory Networks
  • Genetic Predisposition to Disease
  • Genome-Wide Association Study
  • Humans
  • Lymphocytes / chemistry*
  • Lymphocytes / immunology
  • Male
  • Protein Isoforms / chemistry
  • Protein Isoforms / metabolism
  • Quantitative Trait Loci
  • Receptors, CCR1 / metabolism
  • Sequence Analysis, RNA / methods*

Substances

  • CCR1 protein, human
  • Protein Isoforms
  • Receptors, CCR1