AMPK: Sensing Glucose as well as Cellular Energy Status

Cell Metab. 2018 Feb 6;27(2):299-313. doi: 10.1016/j.cmet.2017.10.009. Epub 2017 Nov 16.

Abstract

Mammalian AMPK is known to be activated by falling cellular energy status, signaled by rising AMP/ATP and ADP/ATP ratios. We review recent information about how this occurs but also discuss new studies suggesting that AMPK is able to sense glucose availability independently of changes in adenine nucleotides. The glycolytic intermediate fructose-1,6-bisphosphate (FBP) is sensed by aldolase, which binds to the v-ATPase on the lysosomal surface. In the absence of FBP, interactions between aldolase and the v-ATPase are altered, allowing formation of an AXIN-based AMPK-activation complex containing the v-ATPase, Ragulator, AXIN, LKB1, and AMPK, causing increased Thr172 phosphorylation and AMPK activation. This nutrient-sensing mechanism activates AMPK but also primes it for further activation if cellular energy status subsequently falls. Glucose sensing at the lysosome, in which AMPK and other components of the activation complex act antagonistically with another key nutrient sensor, mTORC1, may have been one of the ancestral roles of AMPK.

Keywords: AMP-activated protein kinase; AMPK; energy sensing; glucose sensing; nutrient sensing; origin of eukaryotes.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.
  • Review

MeSH terms

  • AMP-Activated Protein Kinases / chemistry
  • AMP-Activated Protein Kinases / metabolism*
  • Adenine Nucleotides / metabolism
  • Animals
  • Binding Sites
  • Biological Evolution
  • Energy Metabolism*
  • Glucose / metabolism*
  • Humans

Substances

  • Adenine Nucleotides
  • AMP-Activated Protein Kinases
  • Glucose