Dynamic action potential clamp predicts functional separation in mild familial and severe de novo forms of SCN2A epilepsy

Proc Natl Acad Sci U S A. 2018 Jun 12;115(24):E5516-E5525. doi: 10.1073/pnas.1800077115. Epub 2018 May 29.

Abstract

De novo variants in SCN2A developmental and epileptic encephalopathy (DEE) show distinctive genotype-phenotype correlations. The two most recurrent SCN2A variants in DEE, R1882Q and R853Q, are associated with different ages and seizure types at onset. R1882Q presents on day 1 of life with focal seizures, while infantile spasms is the dominant seizure type seen in R853Q cases, presenting at a median age of 8 months. Voltage clamp, which characterizes the functional properties of ion channels, predicted gain-of-function for R1882Q and loss-of-function for R853Q. Dynamic action potential clamp, that we implement here as a method for modeling neurophysiological consequences of a given epilepsy variant, predicted that the R1882Q variant would cause a dramatic increase in firing, whereas the R853Q variant would cause a marked reduction in action potential firing. Dynamic clamp was also able to functionally separate the L1563V variant, seen in benign familial neonatal-infantile seizures from R1882Q, seen in DEE, suggesting a diagnostic potential for this type of analysis. Overall, the study shows a strong correlation between clinical phenotype, SCN2A genotype, and functional modeling. Dynamic clamp is well positioned to impact our understanding of pathomechanisms and for development of disease mechanism-targeted therapies in genetic epilepsy.

Keywords: de novo SCN2A mutation; dynamic action potential clamp; epilepsy; modeling; voltage clamp.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Action Potentials / genetics*
  • Adolescent
  • Adult
  • Brain Diseases / genetics
  • Child
  • Child, Preschool
  • Epilepsy / genetics*
  • Female
  • Genetic Association Studies / methods
  • Genetic Variation / genetics
  • Genotype
  • Humans
  • Infant
  • Infant, Newborn
  • Male
  • NAV1.2 Voltage-Gated Sodium Channel / genetics*
  • Phenotype
  • Seizures / genetics
  • Spasms, Infantile / genetics
  • Young Adult

Substances

  • NAV1.2 Voltage-Gated Sodium Channel
  • SCN2A protein, human