Developing and validating a novel metabolic tumor volume risk stratification system for supplementing non-small cell lung cancer staging

Eur J Nucl Med Mol Imaging. 2018 Nov;45(12):2079-2092. doi: 10.1007/s00259-018-4059-3. Epub 2018 Jun 7.

Abstract

Purpose: We hypothesized that whole-body metabolic tumor volume (MTVwb) could be used to supplement non-small cell lung cancer (NSCLC) staging due to its independent prognostic value. The goal of this study was to develop and validate a novel MTVwb risk stratification system to supplement NSCLC staging.

Methods: We performed an IRB-approved retrospective review of 935 patients with NSCLC and FDG-avid tumor divided into modeling and validation cohorts based on the type of PET/CT scanner used for imaging. In addition, sensitivity analysis was conducted by dividing the patient population into two randomized cohorts. Cox regression and Kaplan-Meier survival analyses were performed to determine the prognostic value of the MTVwb risk stratification system.

Results: The cut-off values (10.0, 53.4 and 155.0 mL) between the MTVwb quartiles of the modeling cohort were applied to both the modeling and validation cohorts to determine each patient's MTVwb risk stratum. The survival analyses showed that a lower MTVwb risk stratum was associated with better overall survival (all p < 0.01), independent of TNM stage together with other clinical prognostic factors, and the discriminatory power of the MTVwb risk stratification system, as measured by Gönen and Heller's concordance index, was not significantly different from that of TNM stage in both cohorts. Also, the prognostic value of the MTVwb risk stratum was robust in the two randomized cohorts. The discordance rate between the MTVwb risk stratum and TNM stage or substage was 45.1% in the modeling cohort and 50.3% in the validation cohort.

Conclusion: This study developed and validated a novel MTVwb risk stratification system, which has prognostic value independent of the TNM stage and other clinical prognostic factors in NSCLC, suggesting that it could be used for further NSCLC pretreatment assessment and for refining treatment decisions in individual patients.

Keywords: 18F-FDG PET/CT; Non-small cell lung cancer; Risk stratification; TNM staging; Tumor burden; Whole-body metabolic tumor volume.

Publication types

  • Validation Study

MeSH terms

  • Aged
  • Carcinoma, Non-Small-Cell Lung / diagnostic imaging*
  • Carcinoma, Non-Small-Cell Lung / pathology
  • Female
  • Fluorodeoxyglucose F18
  • Humans
  • Lung Neoplasms / diagnostic imaging*
  • Lung Neoplasms / pathology
  • Male
  • Middle Aged
  • Neoplasm Staging / methods
  • Neoplasm Staging / standards
  • Positron Emission Tomography Computed Tomography / methods*
  • Positron Emission Tomography Computed Tomography / standards
  • Radiopharmaceuticals
  • Reference Standards
  • Tumor Burden

Substances

  • Radiopharmaceuticals
  • Fluorodeoxyglucose F18