Low dose dinaciclib enhances doxorubicin-induced senescence in myeloma RPMI8226 cells by transformation of the p21 and p16 pathways

Oncol Lett. 2018 Nov;16(5):6608-6614. doi: 10.3892/ol.2018.9474. Epub 2018 Sep 20.

Abstract

Multiple myeloma (MM) is a hematological malignancy that lacks a cure. However, novel combination therapy is a current anti-MM strategy. Doxorubicin (DOX) is a type of anthracycline which is a first-line chemotherapeutic for treating MM and induces senescence in many types of cancer. Dinaciclib is a potent, small molecule CDK inhibitor with promise for treating several types of cancer in I/II phase clinical trials. In the present study the anticancer effects and underlying mechanisms of dinaciclib combined with DOX in MM RPMI-8226 cells were investigated. Results indicated that DOX induced cell viability inhibition, cell cycle arrest and senescence. Furthermore, DOX resulted in increased alterations in DNA damage-related proteins such as p-ATM, p-Chk2, p-p53, p21 and γH2AX, but not p16. Notably, the combination of dinaciclib and DOX inhibited cell growth and promoted senescence by transforming the suppressive effects of the ATM/Chk2/p53/p21 signaling pathway and enhancing the p16 signaling pathway. Thus, low-dose dinaciclib enhanced anti-MM effects mediated by DOX via transformation of p21-p16 signaling pathways, leading to accelerated senescence, but not apoptosis. The present findings suggest this approach may be a promising therapeutic strategy for the treatment of MM.

Keywords: DNA damage; dinaciclib; doxorubicin; multiple myeloma; senescence.