Whole-genome scanning for the heat-resistance-associated genes in the Droughtmaster breed (Bos taurus)

3 Biotech. 2019 Mar;9(3):95. doi: 10.1007/s13205-019-1620-0. Epub 2019 Feb 19.

Abstract

The Droughtmaster is a tropical breed of beef cattle developed in North Queensland that exhibits a combination of heat resistance and parasitic resistance from long-term artificial selection. Therefore, we used next-generation sequencing technology to screen the chromosomal regions and genes related to heat-resistance in cattle to provide data for improving cattle breeding. A total of 15,569,067 variants including 14,249,316 SNPs were obtained from two mixed pools by genome-wide resequencing. According to the results of the selective sweep analysis of the Droughtmaster pool compared to the nonheat resistant breeds pool, 81 candidate genes under selection in Droughtmaster were identified by combining Z HP and F ST analyses with a threshold standard of the top 1%, including SLC7A11, GYPC, and GYPC. In addition, 40 GO terms and 44 pathways were annotated from newly identified candidate genes. These signaling pathways were involved in environmental information processing, organismal systems, and metabolism. A majority of these genes have not been implicated in the previous studies of heat resistance. This study explored the genomic changes that result from long-term artificial selection, our findings help to explain the molecular mechanism of heat resistance in cattle.

Keywords: Cattle; Droughtmaster; Heat resistance; Whole-genome scanning.

Publication types

  • Case Reports