Intraocular Pressure and Its Associations in a Russian Population: The Ural Eye and Medical Study

Am J Ophthalmol. 2019 Aug:204:130-139. doi: 10.1016/j.ajo.2019.02.030. Epub 2019 Mar 6.

Abstract

Purpose: To assess the normal distribution of intraocular pressure (IOP) and its associations with ocular, medical, and socioeconomic factors in a Russian population.

Design: Population-based cross-sectional study.

Methods: The Ural Eye and Medical Study conducted in a rural and urban area in Ufa/Bashkortostan included 5899 (80.5%) participants out of 7328 eligible individuals aged 40+ years. IOP was measured by noncontact tonometry.

Results: After exclusion of individuals after glaucoma surgery or with antiglaucomatous therapy, mean IOP was 13.6 ± 3.8 mm Hg (median: 13 mm Hg; range: 3-49 mm Hg; 95% confidence interval [CI]: 8-23 mm Hg). The IOP range within the mean ± 2 standard deviations was 6.0-21.2 mm Hg. In multivariable analysis higher IOP was associated (regression coefficient r: 0.40) with the systemic parameters of female sex (nonstandardized regression coefficient B: 0.44; 95%CI: 0.22, 0.66; standardized regression coefficient beta: 0.06; P < .001), urban region of habitation (B: -0.27; 95% CI: 0.51, 0.03; beta: 0.03; P = .03), Russian ethnicity (B: 0.47; 95% CI: 0.20, 0.74; beta: 0.05; P = .001), higher body mass index (B: 0.06; 95% CI: 0.04, 0.08; beta: 0.08; P < .001), lower physical activity score (B: -0.02; 95% CI: -0.03, -0.002; beta: -0.03; P = .02), higher prevalence of diabetes mellitus (B: 0.42; 95% CI: 0.08, 0.76; beta: 0.03; P = .02), higher systolic blood pressure (B: 0.01; 95% CI: 0.01, 0.02; beta: 0.08; P < .001), fewer days with intake of fruits (B: -0.07; 95% CI: -0.12, -0.01; beta: 0.03; P = .01), lower blood concentration of bilirubin (B: -0.01; 95% CI: -0.02, -0.003; beta: -0.04; P = .008) and urea (B: -0.11; 95% CI: -0.17, -0.04; beta: -0.04; P = .003), worse best-corrected visual acuity (B: 0.64; 95% CI: 0.38, 0.90; beta: 0.13; P < .001), thicker central corneal thickness (B: 0.036; 95% CI: 0.033, 0.039; beta: 0.32; P < .001), higher anterior corneal refractive power (B: 0.11; 95% CI: 0.04, 0.18; beta: 0.05; P = .003), lower anterior chamber depth (B: -0.57; 95% CI: -0.83, -0.30; beta: -0.07; P < .001) (or lower prevalence of cataract surgery [B: -0.78; 95% CI: -1.44, -0.13; beta: -0.03; P = .02]), longer axial length (B: 0.30; 95% CI: 0.18, 0.42; beta: 0.07; P < .001), and higher prevalence of pseudoexfoliation (B: 1.08; 95% CI: 0.52, 1.63; beta: 1.01; P < .001). Measured IOP decreased by 0.36 mm Hg (95% CI: 0.33, 0.39) for each increase in central corneal thickness by 10 μm.

Conclusions: IOP was associated with a multitude of systemic and ocular parameters, the associations of which may be considered in defining the normal range of IOP.

Publication types

  • Multicenter Study

MeSH terms

  • Adult
  • Aged
  • Aged, 80 and over
  • Cross-Sectional Studies
  • Female
  • Follow-Up Studies
  • Glaucoma / epidemiology
  • Glaucoma / physiopathology*
  • Humans
  • Intraocular Pressure / physiology*
  • Male
  • Middle Aged
  • Morbidity / trends
  • Nerve Fibers / pathology
  • Population Surveillance / methods*
  • Prevalence
  • Prognosis
  • Retinal Ganglion Cells / pathology
  • Rural Population*
  • Russia / epidemiology
  • Tomography, Optical Coherence
  • Tonometry, Ocular
  • Urban Population*