Image Quality of Iodine Maps for Pulmonary Embolism: A Comparison of Subtraction CT and Dual-Energy CT

AJR Am J Roentgenol. 2019 Jun;212(6):1253-1259. doi: 10.2214/AJR.18.20786. Epub 2019 Mar 12.

Abstract

OBJECTIVE. The objective of this study was to compare the image quality of iodine maps derived from subtraction CT and from dual-energy CT (DECT) in patients with suspected pulmonary embolism (PE). SUBJECTS AND METHODS. In this prospective study conducted between July 2016 and April 2017, consecutive patients with suspected PE underwent unenhanced CT at 100 kV and dual-energy pulmonary CT angiography at 100 and 140 kV on a dual-source scanner. The scanner was set to generate subtraction and DECT iodine maps at similar radiation doses. In 55 patients (30 women, 25 men; mean age ± SD, 63.4 ± 11.9 years old), various subjective image quality criteria including diagnostic acceptability were rated on a 5-point scale by four radiologists and a radiology resident. In 29 patients (17 women, 12 men; mean age, 62.4 ± 11.7 years old) with confirmed perfusion defects, the signal-difference-to-noise ratio (SDNR) between perfusion defects and adjacent normally perfused parenchyma was measured in corresponding ROIs on subtraction and DECT iodine maps. McNemar and Wilcoxon signed-rank tests were used for statistical comparisons. RESULTS. Diagnostic acceptability was rated excellent or good in a mean of 67% (range, 31-80%) of subtraction CT studies and 36% (5-69%) of DECT studies (p < 0.05 for four of the five radiologists), mainly because of fewer artifacts on subtraction CT. Mean SDNR was marginally higher for subtraction CT than for DECT (18.6 vs 17.1, p = 0.06) and was significantly higher in the upper lobes (21.8 vs 17.9, p < 0.05). CONCLUSION. Radiologist-judged image quality of pulmonary iodine maps was higher for subtraction CT than for DECT with similar to higher SDNR. Subtraction CT is a software-only solution, so it may be an attractive alternative to DECT for depicting perfusion defects.

Keywords: CT angiography; dual-energy technique; image quality; pulmonary embolism; subtraction technique.