A prospective randomized controlled trial comparing conventional Intuitive® procedure card recommended port placement with the modified Indian (Manipal) technique

J Minim Access Surg. 2020 Jul-Sep;16(3):246-250. doi: 10.4103/jmas.JMAS_18_19.

Abstract

Introduction: The da Vinci® X hybrid systems (Intuitive Surgical®, Sunnyvale CA) provides standard sites recommendations for port placement during robotic surgery; including that for colorectal procedures. The author's encountered challenges while adhering to the provided instructions, such as clash of instruments and arms and need for additional ports, and hence to overcome these challenges attempted a few innovative technical modifications. The surgical results as well as merits of the revised Indian (Manipal) port placement with single docking technique are presented here.

Methods: Twenty patients underwent robotic rectal resection at the Department of Surgical Oncology and Robotic Surgery, Manipal Comprehensive Cancer Centre, Bengaluru, India, between December 2017 and June 2018. A randomised controlled study was conducted to compare the two techniques. Ten patients were operated using hybrid da Vinci® 'X' system using the manufacturer's recommendations and 10 by the modified Indian (Manipal) port placement with a single docking technique.

Result and conclusions: The Indian (Manipal) modifications of port placements are optimal for colorectal procedures such as low anterior resection as well as for ultralow anterior resections. The intraoperative parameters compared between the recommendations of the Intuitive® (da Vinci® systems) and attempted modifications demonstrated statistically significant advantages with the use of the revised techniques. The improvements offered by this modification include no additional requirements of ports or staplers, lesser clash amongst instruments as well as arms, better mobilisation of splenic flexure amongst others.

Keywords: Indian (Manipal) port placement technique; port placement; rectal cancer; robotic rectal resection; single docking.