IL-21 Expands HIV-1-Specific CD8+ T Memory Stem Cells to Suppress HIV-1 Replication In Vitro

J Immunol Res. 2019 Apr 30:2019:1801560. doi: 10.1155/2019/1801560. eCollection 2019.

Abstract

Due to the existence of viral reservoirs, the rebound of human immunodeficiency virus type 1 (HIV-1) viremia can occur within weeks after discontinuing combined antiretroviral therapy. Immunotherapy could potentially be applied to eradicate reactivated HIV-1 in latently infected CD4+ T lymphocytes. Although the existence of HIV-1-specific CD8+ T memory stem cells (TSCMs) is well established, there are currently no reports regarding methods using CD8+ TSCMs to treat HIV-1 infection. In this study, we quantified peripheral blood antigen-specific CD8+ TSCMs and then expanded HIV-1-specific TSCMs that targeted optimal antigen epitopes (SL9, IL9, and TL9) in the presence of interleukin- (IL-) 21 or IL-15. The suppressive capacity of the expanded CD8+ TSCMs on HIV-1 production was measured by assessing cell-associated viral RNA and performing viral outgrowth assays. We found that the number of unmutated TL9-specific CD8+ TSCMs positively correlated with the abundance of CD4+ T cells and that the expression of IFN-γ was higher in TL9-specific CD8+ TSCMs than that in non-TL9-specific CD8+ TSCMs. Moreover, the antiviral capacities of IL-21-stimulated CD8+ TSCMs exceeded those of conventional CD8+ memory T cells and IL-15-stimulated CD8+ TSCMs. Thus, we demonstrated that IL-21 could efficiently expand HIV-1-specific CD8+ TSCMs to suppress HIV-1 replication. Our study provides new insight into the function of IL-21 in the in vitro suppression of HIV-1 replication.

MeSH terms

  • CD4-Positive T-Lymphocytes / immunology*
  • CD8-Positive T-Lymphocytes / immunology*
  • Cells, Cultured
  • Cohort Studies
  • Epitopes / immunology
  • HIV Antigens / immunology
  • HIV Infections / immunology*
  • HIV-1 / physiology*
  • Humans
  • Immunologic Memory
  • Interferon-gamma / metabolism
  • Interleukin-15 / metabolism
  • Interleukins / metabolism*
  • Lymphocyte Activation
  • Virus Replication

Substances

  • Epitopes
  • HIV Antigens
  • Interleukin-15
  • Interleukins
  • Interferon-gamma
  • interleukin-21