Electron beam-induced current imaging with two-angstrom resolution

Ultramicroscopy. 2019 Dec:207:112852. doi: 10.1016/j.ultramic.2019.112852. Epub 2019 Oct 1.

Abstract

An electron microscope's primary beam simultaneously ejects secondary electrons (SEs) from the sample and generates electron beam-induced currents (EBICs) in the sample. Both signals can be captured and digitized to produce images. The off-sample Everhart-Thornley detectors that are common in scanning electron microscopes (SEMs) can detect SEs with low noise and high bandwidth. However, the transimpedance amplifiers appropriate for detecting EBICs do not have such good performance, which makes accessing the benefits of EBIC imaging at high-resolution relatively more challenging. Here we report lattice-resolution imaging via detection of the EBIC produced by SE emission (SEEBIC). We use an aberration-corrected scanning transmission electron microscope (STEM), and image both microfabricated devices and standard calibration grids.

Keywords: Aberration-correction; EBIC; STEM; Secondary electrons; Transmission electron microscopy.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Electrons
  • Microscopy, Electron, Scanning / methods*