Pedunculopontine Nucleus Deep Brain Stimulation Improves Gait Disorder in Parkinson's Disease: A Systematic Review and Meta-analysis

Neurochem Res. 2020 Apr;45(4):709-719. doi: 10.1007/s11064-020-02962-y. Epub 2020 Jan 16.

Abstract

Deep brain stimulation (DBS) of the pedunculopontine nucleus (PPN) has been proposed as a treatment strategy for gait disorder in patients with Parkinson's disease (PD). We thus performed a systematic review and meta-analysis of randomized and nonrandomized controlled trials to assess the effect of this treatment on gait disorder in patients with PD. We systematically searched PubMed, Cochrane, Web of Knowledge, Wan Fang and WIP for randomized and nonrandomized controlled trials (published before July 29, 2014; no language restrictions) comparing PPN-DBS with other treatments. We assessed pooled data using a random effects model and a fixed effects model. Of 130 identified studies, 14 were eligible and were included in our analysis (N = 82 participants). Compared to those presurgery, the Unified Parkinson Disease Rating Scale (UPDRS) 27-30 scores for patients were lowered by PPN-DBS [3.94 (95% confidence interval, CI = 1.23 to 6.65)]. The UPDRS 13 and 14 scores did not improve with levodopa treatment [0.43 (- 0.35 to 1.20); 0.35 (- 0.50 to 1.19)], whereas the UPDRS 27-30 scores could be improved by the therapy [1.42 (95% CI 0.34 to 2.51)]. The Gait and Falls Questionnaire and UPDRS 13 and 14 scores showed significant improvements after PPN-DBS under the medication-off (MED-OFF) status [15.44 (95% CI = 8.44 to 22.45); 1.57 (95% CI = 0.84 to 2.30); 1.34 (95% CI = 0.84 to 1.84)]. PPN-DBS is a potential therapeutic target that could improve gait and fall disorders in patients with PD. Our findings will help improve the clinical application of DBS in PD patients with gait disorder.

Keywords: Deep brain stimulation; Meta-analysis; Parkinson’s disease; Pedunculopontine nucleus; Systematic review.

Publication types

  • Meta-Analysis
  • Systematic Review

MeSH terms

  • Clinical Trials as Topic
  • Deep Brain Stimulation / methods*
  • Gait Disorders, Neurologic / therapy*
  • Humans
  • Parkinson Disease / therapy*
  • Pedunculopontine Tegmental Nucleus / physiology*