A Comparison of Different Immune Activation Strategies to Reverse HIV-1 Latency

Open Forum Infect Dis. 2020 Mar 4;7(4):ofaa082. doi: 10.1093/ofid/ofaa082. eCollection 2020 Apr.

Abstract

Resting CD4+ T cells are the best characterized component of the latent reservoir. Activation of these CD4+ T cells is needed to optimize transcription and viral replication, and this strategy has been used to measure the inducible reservoir. There are several methods that can be used to activate CD4+ T cells, and in this study, we compared 3 different strategies: the combination of the lectin phytohaemagglutinin (PHA) and irradiated allogeneic feeders, a combination of PHA and a superagonistic anti-CD28 antibody, and the combination of the protein kinase C agonist phorbol 12-myristate 13-acetate and the calcium ionophore ionomycin. We show that each strategy induces a different pattern of expression of activation markers on CD4+ T cells. However, the different activation strategies induced similar frequencies of latently infected CD4+ T cells from people living with HIV on suppressive antiretroviral therapy regimens to produce replication-competent virus. Furthermore, the frequency of infectious units per million induced by each regimen was positively correlated with the copies of intact proviral DNA per million CD4+ T cells. Our results suggest that no single pattern of activation marker expression is most associated with latency reversal and demonstrate that different immune activation strategies reverse latency in a low frequency of CD4+ T cells that harbor intact proviral DNA.

Keywords: HIV; culture assay; cure; latency.