Nano-enabled improvements of growth and nutritional quality in food plants driven by rhizosphere processes

Environ Int. 2020 Sep:142:105831. doi: 10.1016/j.envint.2020.105831. Epub 2020 Jun 12.

Abstract

With the rising global population growth and limitation of traditional agricultural technology, global crop production could not provide enough nutrients to assure adequate intake for all people. Nano-fertilizers and nano-pesticides have 20-30% higher efficacy than conventional products, which offer an effective solution to the above-mentioned problem. Rhizosphere is where plant roots, soil, and soil biota interact, and is the portal of nutrients transporting from soil into plants. The rhizosphere processes could modify the bioavailability of all nutrients and nanomaterials (NMs) before entering the food plants. However, to date, the overall rhizosphere processes regulating the behaviors and bioavailability of NMs to enhance the nutritional quality are still uncertain. In this review, a meta-analysis is conducted to quantitatively assess NMs-mediated changes in nutritional quality from food plants. Furthermore, the current knowledge and related mechanisms of the behavior and bioavailability of NMs driven by rhizosphere processes, e.g., root secretions, microbial and earthworm activities, are summarized. A series of rhizosphere processes can influence how NMs enter plants and change the biological responses, including signal transduction and nutrient absorption and transport. Moreover, future perspectives are presented to maximize the potentials of NMs applications for the enhancement of food crop production and global food security.

Keywords: Biological responses; Meta-analysis; Nanomaterials; Rhizosphere processes; Sustainable agriculture.

Publication types

  • Meta-Analysis
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.
  • Review

MeSH terms

  • Humans
  • Nutritive Value
  • Plant Roots
  • Plants, Edible*
  • Rhizosphere*
  • Soil
  • Soil Microbiology

Substances

  • Soil