Intravital Imaging of Adoptive T-Cell Morphology, Mobility and Trafficking Following Immune Checkpoint Inhibition in a Mouse Melanoma Model

Front Immunol. 2020 Jul 22:11:1514. doi: 10.3389/fimmu.2020.01514. eCollection 2020.

Abstract

Efficient T-cell targeting, infiltration and activation within tumors is crucial for successful adoptive T-cell therapy. Intravital microscopy is a powerful tool for the visualization of T-cell behavior within tumors, as well as spatial and temporal heterogeneity in response to immunotherapy. Here we describe an experimental approach for intravital imaging of adoptive T-cell morphology, mobility and trafficking in a skin-flap tumor model, following immune modulation with immune checkpoint inhibitors (ICIs) targeting PD-L1 and CTLA-4. A syngeneic model of ovalbumin and mCherry-expressing amelanotic mouse melanoma was used in conjunction with adoptively transferred OT-1+ cytotoxic T-cells expressing GFP to image antigen-specific live T-cell behavior within the tumor microenvironment. Dynamic image analysis of T-cell motility showed distinct CD8+ T-cell migration patterns and morpho-dynamics within different tumor compartments in response to ICIs: this approach was used to cluster T-cell behavior into four groups based on velocity and meandering index. The results showed that most T-cells within the tumor periphery demonstrated Lévy-like trajectories, consistent with tumor cell searching strategies. T-cells adjacent to tumor cells had reduced velocity and appeared to probe the local environment, consistent with cell-cell interactions. An increased number of T-cells were detected following treatment, traveling at lower mean velocities than controls, and demonstrating reduced displacement consistent with target engagement. Histogram-based analysis of immunofluorescent images from harvested tumors showed that in the ICI-treated mice there was a higher density of CD31+ vessels compared to untreated controls and a greater infiltration of T-cells towards the tumor core, consistent with increased cellular trafficking post-treatment.

Keywords: adoptive T-cell therapy; immune checkpoint inhibitors; immunocompetent; intravital imaging; melanoma.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adoptive Transfer*
  • Animals
  • Antigens, Neoplasm / immunology
  • Cell Line, Tumor
  • Cell Movement / immunology*
  • Combined Modality Therapy
  • Disease Models, Animal
  • Fluorescent Antibody Technique / methods
  • Image Processing, Computer-Assisted
  • Immune Checkpoint Inhibitors / pharmacology*
  • Immunotherapy, Adoptive
  • Lymphocyte Activation / immunology
  • Melanoma, Experimental / diagnostic imaging
  • Melanoma, Experimental / etiology
  • Melanoma, Experimental / therapy
  • Mice
  • Molecular Imaging* / methods
  • T-Cell Antigen Receptor Specificity
  • T-Lymphocytes / cytology*
  • T-Lymphocytes / drug effects*
  • T-Lymphocytes / immunology*
  • T-Lymphocytes / metabolism

Substances

  • Antigens, Neoplasm
  • Immune Checkpoint Inhibitors