Bosonic Quantum Communication across Arbitrarily High Loss Channels

Phys Rev Lett. 2020 Sep 11;125(11):110504. doi: 10.1103/PhysRevLett.125.110504.

Abstract

A general attenuator Φ_{λ,σ} is a bosonic quantum channel that acts by combining the input with a fixed environment state σ in a beam splitter of transmissivity λ. If σ is a thermal state, the resulting channel is a thermal attenuator, whose quantum capacity vanishes for λ≤1/2. We study the quantum capacity of these objects for generic σ, proving a number of unexpected results. Most notably, we show that for any arbitrary value of λ>0 there exists a suitable single-mode state σ(λ) such that the quantum capacity of Φ_{λ,σ(λ)} is larger than a universal constant c>0. Our result holds even when we fix an energy constraint at the input of the channel, and implies that quantum communication at a constant rate is possible even in the limit of arbitrarily low transmissivity, provided that the environment state is appropriately controlled. We also find examples of states σ such that the quantum capacity of Φ_{λ,σ} is not monotonic in λ. These findings may have implications for the study of communication lines running across integrated optical circuits, of which general attenuators provide natural models.