Not Stromal Vascular Fraction (SVF) or Nanofat, but Total Stromal-Cells (TOST): A New Definition. Systemic Review of Mechanical Stromal-Cell Extraction Techniques

Tissue Eng Regen Med. 2021 Feb;18(1):25-36. doi: 10.1007/s13770-020-00313-0. Epub 2020 Nov 24.

Abstract

The most important and greatest source in the body for regenerative cells is fat tissue. Obtaining regenerative cells from adipose tissue can be done in two ways: Enzymatic and mechanical. The regenerative cell cocktail obtained by the enzymatic method, including stem cells, is called Stromal vascular fracture (SVF). In the literature, there is no clear definition of regenerative cells obtained by mechanical method. We systematically searched the techniques and definitions for stromal cells obtained from adipose tissue by scanning different databases. To evaluate the mechanical stromal-cell isolation techniques and end products from adipose tissue. Systematic review of English and non-English articles using Embase, PubMed, Web of Science and Google scholar databases. Search terms included Nanofat, fragmented fat, mechanical stromal / stem cell, mechanical SVF, SVF gel. We screened all peer-reviewed articles related with mechanical stromal-cell isolation. Author performed a literature query with the aforementioned key words and databases. A total of 276 publications containing the keywords we searched were reached. In these publications, there are 46 different definitions used to obtain mechanical stromal cells. The term SVF is only suitable for enzymatic methods. A different definition is required for mechanical. The most used term nanofat is also not suitable because the product is not in both "fat" and in "nanoscale". We think that the term total stromal-cells would be the most appropriate definition since both extracellular matrix and all stromal cells are protected in mechanical methods.

Keywords: Mechanical isolation; Nanofat; Regeneration; SVF; Stromal cells; Total stromal cells.

Publication types

  • Systematic Review

MeSH terms

  • Adipose Tissue*
  • Cell Separation
  • Extracellular Matrix
  • Stromal Cells*