A meta-analysis of heavy metal bioavailability response to biochar aging: Importance of soil and biochar properties

Sci Total Environ. 2021 Feb 20:756:144058. doi: 10.1016/j.scitotenv.2020.144058. Epub 2020 Nov 26.

Abstract

Biochar has been widely applied to remediate the heavy metal-polluted soils, whereas biochar aging can induce the changes of the biochar physic-chemical properties. Afterwards, the bioavailability of heavy metals (BHM) will vary in soils which likely increase the unstable fractions of heavy metals and the following environmental risks. To explore the biochar aging effects on the BHM changes in responses to the variation of experimental conditions and biochar properties, a meta-analysis for the literatures published before May 2020 was conducted. A sum of 257 independent observations from 22 published papers was obtained. The results from the analysis of boosted regression tree showed that the soil pH was the most important factor influencing the BHM changes in biochar amended soil, followed by soil texture, aging time and biochar pyrolysis temperature. The results of this review showed that the BHM was decreased by 16.9%, 28.7% and 6.4% in weakly acid soil (pH 6.00-6.99), coarse- and medium-textured soils, respectively, but increased by 149% and 121% in the alkaline (pH > 8.00) and fine-textured soils. The BHM declined in the soils amended with biochar pyrolyzed at relative high temperature (> 500 °C), and increased during aging in soils amended with biochar pyrolyzed at relatively low temperature (401-500 °C). In terms of diverse immobilized heavy metals, only bioavailable Zn in soil decreased after aging. However, there was no significant changes in Cd, Cu and Pb's bioavalability. Besides, the BHM was decreased by 18.6% within the short-term (less than one year) biochar aging, while showed inverse trend during the longer aging processes. Besides, the application of lignin-enriched biochar may counteract the positive effects of the biochar aging on BHM. Our works may promote the interpretation of the interference factors on the BHM changes and filled the research gaps on biochar aging process in soils.

Keywords: Bioavailability; Biochar aging; Heavy metal; Immobilization; Meta-analysis.

Publication types

  • Meta-Analysis
  • Review

MeSH terms

  • Biological Availability
  • Charcoal
  • Metals, Heavy* / analysis
  • Soil
  • Soil Pollutants* / analysis

Substances

  • Metals, Heavy
  • Soil
  • Soil Pollutants
  • biochar
  • Charcoal