Hypoxic tumor-derived exosomal circular RNA SETDB1 promotes invasive growth and EMT via the miR-7/Sp1 axis in lung adenocarcinoma

Mol Ther Nucleic Acids. 2021 Jan 26:23:1078-1092. doi: 10.1016/j.omtn.2021.01.019. eCollection 2021 Mar 5.

Abstract

Hypoxia is a common feature of solid tumors and has been associated with tumor aggressiveness and poor prognosis. Exosomes are involved in mediating cellular-environment interactions. Circular RNAs (circRNAs) are a class of non-coding RNA broadly found in cells and exosomes. However, the functions and regulatory mechanisms of exosomal circRNAs induced by hypoxia remain poorly understood in lung adenocarcinoma (LUAD) development. Differentially expressed circRNAs were identified between exosomes extracted from hypoxic and normoxic conditions through microarray analysis. We focused on hsa-circ-0003439 found on chromosome 1 and derived from SET domain bifurcated histone lysine methyltransferase 1 (SETDB1), and thus we named it circSETDB1. We discovered that exosomes obtained from hypoxic LUAD cells improved the migration, invasion, and proliferation capacity of normoxic LUAD cells. circSETDB1 was found to be significantly upregulated in hypoxia-induced exosomes from LUAD cell lines compared with exosomes in the normal condition. Moreover, knockdown of circSETDB1 significantly inhibited cell malignant growth in vitro. Importantly, we showed that circSETDB1 was upregulated in serum exosomes in LUAD patients, and exosomal circSETDB1 levels were closely associated with disease stage. Finally, using RNA immunoprecipitation (RIP), bioinformatics, and luciferase reporter assays, we elucidated the implication of a circSETDB1/miR-7/specificity protein 1 (Sp1) axis in the development and epithelial-mesenchymal transition (EMT) of lung adenocarcinoma.

Keywords: Sp1; circular RNA; exosome; hypoxia; lung adenocarcinoma.

Publication types

  • Retracted Publication