Transformation and release of micronized Cu used as a wood preservative in treated wood in wetland soil

Environ Pollut. 2021 Oct 15:287:117189. doi: 10.1016/j.envpol.2021.117189. Epub 2021 Apr 19.

Abstract

Micronized Cu (μ-Cu) is used as a wood preservative, replacing toxic chromated copper arsenate (CCA). Micronized Cu is malachite [Cu2CO3(OH)2] that has been milled to micron/submicron particles, with many particle diameters less than 100 nm, mixed with biocides and then used to treat wood. In addition to concerns about the fate of the Cu from μ-Cu, there is interest in the fate of the nano-Cu (n-Cu) constituents. We examined movement of Cu from μ-Cu-treated wood after placing treated-wood stakes into model wetland ecosystems. Release of Cu into surface and subsurface water was monitored. Surface water Cu reached maximum levels 3 days after stake installation and remained elevated if the systems remained inundated. Subsurface water Cu levels were 10% of surface water levels at day 3 and increased gradually thereafter. Sequential filtering indicated that a large portion of the Cu in solution was associating with soluble organics, but there was no evidence for n-Cu in solution. After 4 months, Cu in thin-sections of treated wood and adjacent soil were characterized with micro X-ray absorption fine structure spectroscopy (μ-XAFS). Localization and speciation of Cu in the wood and adjacent soil using μ-XAFS clearly indicated that Cu concentrations decreased over time in the treated wood and increased in the adjacent soil. However, n-Cu from the treated wood was not found in the adjacent soil or plant roots. The results of this study indicate that Cu in the μ-Cu-treated wood dissolves and migrates into adjacent soil and waters primarily in ionic form (i.e., Cu2+) and not as nano-sized Cu particles. A reduced form of Cu (Cu2S) was identified in deep soil proximal to the treated wood, indicating strong reducing conditions. The formation of the insoluble Cu2S effectively removes some portion of dissolved Cu from solution, reducing movement of Cu2+ to the water column and diminishing exposure.

Keywords: Ecological effects; Nano materials; Redox processes; Sediment chemistry; Sediment processes; Water chemistry; XAFS.

MeSH terms

  • Arsenates
  • Copper / analysis
  • Ecosystem
  • Soil
  • Soil Pollutants* / analysis
  • Wetlands
  • Wood* / chemistry

Substances

  • Arsenates
  • Soil
  • Soil Pollutants
  • Copper