VoltageFluor dyes and fluorescence lifetime imaging for optical measurement of membrane potential

Methods Enzymol. 2021:653:267-293. doi: 10.1016/bs.mie.2021.02.009. Epub 2021 Mar 29.

Abstract

Membrane potential is a fundamental biophysical parameter common to all of cellular life. Traditional methods to measure membrane potential rely on electrodes, which are invasive and low-throughput. Optical methods to measure membrane potential are attractive because they have the potential to be less invasive and higher throughput than classic electrode based techniques. However, most optical measurements rely on changes in fluorescence intensity to detect changes in membrane potential. In this chapter, we discuss the use of fluorescence lifetime imaging microscopy (FLIM) and voltage-sensitive fluorophores (VoltageFluors, or VF dyes) to estimate the millivolt value of membrane potentials in living cells. We discuss theory, application, protocols, and shortcomings of this approach.

Keywords: Electrophysiology; FLIM; Fluorescence lifetime; Imaging; Membrane potential; Microscopy; Voltage-sensitive fluorophore.

MeSH terms

  • Fluorescent Dyes*
  • Membrane Potentials
  • Microscopy, Fluorescence
  • Optical Imaging*

Substances

  • Fluorescent Dyes