Effect of DA1 receptor blockade with SCH 23390 on the renal response to electrical stimulation of the renal nerves

Proc Soc Exp Biol Med. 1986 Apr;181(4):492-7. doi: 10.3181/00379727-181-42282.

Abstract

To evaluate the existence of functional renal dopaminergic innervation in the dog, we studied the effects of direct electrical stimulation of the renal nerves (RNS) with and without blockade of the dopamine receptor (DA1) that mediates the vasodilating and natriuretic response to intrarenal infusion of DA. Before infusion of the DA1 receptor antagonist, SCH 23390, RNS at 1 Hz did not change renal blood flow (RBF) but caused decreased urinary sodium excretion (-53 +/- 9%, P less than 0.01) and fractional excretion of sodium (-47 +/- 10%, P less than 0.01). Stimulation at 4 and 12 Hz elicited marked renal vasoconstriction (delta RBF = -37 +/- 12%, P less than 0.05 and -57 +/- 12%, P less than 0.01, respectively). When RNS (1 Hz) was performed during DA1 receptor blockade with SCH 23390, 0.5 microgram . kg-1 . min-1 iv, the responses were not different than those before SCh 23390 infusion (urinary sodium excretion: -54 +/- 7%, P less than 0.01 and fractional excretion of sodium: -46 +/- 5%, P less than 0.01). Renal vasoconstriction was also not influenced by SCH 23390 (delta RBF = -35 +/- 11%, P less than 0.05 during 4 Hz RNS and -58 +/- 12%, P less than 0.01 at 12 Hz RNS). Thus, the present study does not support the concept of functional dopaminergic innervation of the canine kidney.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Benzazepines / pharmacology*
  • Blood Pressure
  • Dogs
  • Dopamine / physiology
  • Electric Stimulation
  • Female
  • Glomerular Filtration Rate
  • Heart Rate
  • Kidney / blood supply
  • Kidney / innervation*
  • Male
  • Natriuresis
  • Receptors, Dopamine / drug effects*
  • Regional Blood Flow
  • Vasodilation

Substances

  • Benzazepines
  • Receptors, Dopamine
  • Dopamine