Analysis of complexity and dynamic functional connectivity based on resting-state EEG in early Parkinson's disease patients with mild cognitive impairment

Cogn Neurodyn. 2022 Apr;16(2):309-323. doi: 10.1007/s11571-021-09722-w. Epub 2021 Sep 12.

Abstract

To explore the abnormal brain activity of early Parkinson's disease with mild cognitive impairment (ePD-MCI) patients, the study analyzed the dynamic fluctuation of electroencephalogram (EEG) signals and the dynamic change of information communication between EEG signals of ePD-MCI patients. In this study, we recorded resting-state EEG signals of 30 ePD-MCI patients and 37 early Parkinson's disease without mild cognitive impairment (ePD-nMCI) patients. First, we analyzed the difference of the complexity of EEG signals between the two groups. And we found that the complexity in the ePD-MCI group was significantly higher than that in the ePD-nMCI group. Then, by analyzing the dynamic functional network (DFN) topology based on the optimal sliding-window, we found that the temporal correlation coefficients of ePD-MCI patients were lower in the delta and theta bands than those in the ePD-nMCI patients. The temporal characteristic path length of ePD-MCI patients in the alpha band was higher than that of ePD-nMCI patients. In the theta and alpha bands, the temporal small world degrees of ePD-MCI patients were lower than that of patients with ePD-nMCI. In addition, the functional connectivity strength of ePD-MCI patients affected by cognitive impairment was weaker than that of ePD-nMCI patients, and the stability of dynamic functional connectivity network was decreased. This finding may serve as a biomarker to identify ePD-MCI and contribute to the early intervention treatment of ePD-MCI.

Keywords: Complexity; Dynamic functional network; Mild cognitive impairment; Parkinson; Temporal variability.