Identification and classification of cis-regulatory elements in the amphipod crustacean Parhyale hawaiensis

Development. 2022 Jun 1;149(11):dev200793. doi: 10.1242/dev.200793. Epub 2022 Jun 10.

Abstract

Emerging research organisms enable the study of biology that cannot be addressed using classical 'model' organisms. New data resources can accelerate research in such animals. Here, we present new functional genomic resources for the amphipod crustacean Parhyale hawaiensis, facilitating the exploration of gene regulatory evolution using this emerging research organism. We use Omni-ATAC-seq to identify accessible chromatin genome-wide across a broad time course of Parhyale embryonic development. This time course encompasses many major morphological events, including segmentation, body regionalization, gut morphogenesis and limb development. In addition, we use short- and long-read RNA-seq to generate an improved Parhyale genome annotation, enabling deeper classification of identified regulatory elements. We discover differential accessibility, predict nucleosome positioning, infer transcription factor binding, cluster peaks based on accessibility dynamics, classify biological functions and correlate gene expression with accessibility. Using a Minos transposase reporter system, we demonstrate the potential to identify novel regulatory elements using this approach. This work provides a platform for the identification of novel developmental regulatory elements in Parhyale, and offers a framework for performing such experiments in other emerging research organisms.

Keywords: Parhyale hawaiensis; ATAC-seq; Evolution; Functional genomics; RNA-seq.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Amphipoda* / genetics
  • Animals
  • Chromatin
  • Embryonic Development
  • Evolution, Molecular
  • Genome
  • Regulatory Sequences, Nucleic Acid / genetics

Substances

  • Chromatin