Vertex results for the robust analysis of uncertain biochemical systems

J Math Biol. 2022 Sep 19;85(4):35. doi: 10.1007/s00285-022-01799-z.

Abstract

We consider the problem of assessing the sensitivity of uncertain biochemical systems in the presence of input perturbations (either constant or periodic) around a stable steady state. In particular, we propose approaches for the robust sensitivity analysis of systems with uncertain parameters assumed to take values in a hyper-rectangle. We highlight vertex results, which allow us to check whether a property is satisfied for all parameter choices in the hyper-rectangle by simply checking whether it is satisfied for all parameter choices at the vertices of the hyper-rectangle. We show that, for a vast class of systems, including (bio)chemical reaction networks with mass-action kinetics, the system Jacobian has a totally multiaffine structure (namely, all minors of the Jacobian matrix are multiaffine functions of the uncertain parameters), which can be exploited to obtain several vertex results. We consider different problems: robust non-singularity; robust stability of the steady-state; robust steady-state sensitivity analysis, in the case of constant perturbations; robust frequency-response sensitivity analysis, in the presence of periodic perturbations; and robust adaptation analysis. The developed theory is then applied to gain insight into some examples of uncertain biochemical systems, including the incoherent feed-forward loop, the coherent feed-forward loop, the Brusselator oscillator and the Goldbeter oscillator.

Keywords: Biochemical systems; Robustness; Steady-state sensitivity; Vertex algorithm.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Algorithms*
  • Kinetics
  • Uncertainty