Altered chronic glycemic control in a clinically relevant model of rat thoracic spinal contusion

Biosci Rep. 2023 Jan 31;43(1):BSR20221699. doi: 10.1042/BSR20221699.

Abstract

The lifetime risk for Type 2 diabetes mellitus remains higher in people with spinal cord injuries (SCIs) than in the able-bodied population. However, the mechanisms driving this disparity remain poorly understood. The goal of the present study was to evaluate the impact of a palatable high-fat diet (HFD) on glycemic regulation using a rodent model of moderate thoracic contusion. Animals were placed on either Chow or HFD and tolerance to glucose, insulin, and ENSURE mixed meal were investigated. Important targets in the gut-brain axis were investigated. HFD consumption equally induced weight gain in SCI and naïve rats over chow (CH) rats. Elevated blood glucose was observed during intraperitoneal glucose tolerance test in HFD-fed rats over CH-fed rats. Insulin tolerance test (ITT) was unremarkable among the three groups. Gavage of ENSURE resulted in high glucagon-like peptide 1 (GLP-1) release from SCI rats over naïve controls. An elevation in terminal total GLP-1 was measured, with a marked reduction in circulating dipeptidyl peptidase 4, the GLP-1 cleaving enzyme, in SCI rats, compared with naïve. Increased glucagon mRNA in the pancreas and reduced immunoreactive glucagon-positive staining in the pancreas in SCI rats compared with controls suggested increased glucagon turnover. Finally, GLP-1 receptor gene expression in the ileum, the primary source of GLP-1 production and release, in SCI rats suggests the responsivity of the gut to altered circulating GLP-1 in the body. In conclusion, the actions of GLP-1 and its preprohormone, glucagon, are markedly uncoupled from their actions on glucose control in the SCI rat. More work is required to understand GLP-1 in the human.

Keywords: diabetes; glycemic control; metabolism; spinal cord injury.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Animals
  • Blood Glucose
  • Diabetes Mellitus, Type 2*
  • Glucagon*
  • Glucagon-Like Peptide 1 / metabolism
  • Glycemic Control
  • Humans
  • Insulin
  • Rats

Substances

  • Glucagon
  • Insulin
  • Glucagon-Like Peptide 1
  • Blood Glucose