Glucose deprivation and hexose transporter polypeptides of murine fibroblasts

J Biol Chem. 1986 May 25;261(15):6778-89.

Abstract

The effect of Glc deprivation (starvation) on hexose transporter (GT) polypeptide(s) (pp) was studied in 3T3-C2 murine fibroblasts. Cells deprived of Glc exhibit 5-fold increases in hexose transport and Glc-displaceable cytochalasin B binding. Immunoblots of membranes reveal a Mr 55,000 GT pp in fed (4 g of Glc/liter) cells and Mr 55,000 and Mr 42,000 GT pp in starved cells. A 10-40-fold increase in total GT pp occurs upon Glc deprivation; part of this accumulation (2-5-fold) is in the Mr 55,000 GT pp, and the remaining increase is in the Mr 42,000 GT pp. During the first 12 h of Glc deprivation only the Mr 55,000 GT pp accumulates. At later times (24-72 h) the Mr 42,000 GT pp appears and constitutes a larger fraction of the total accumulation. Similarly, the Glc concentration dependence of these phenomena reveals that the Mr 55,000 GT pp accumulates at higher concentrations of Glc (less than or equal to g/liter) than the Mr 42,000 GT pp (less than or equal to 0.5 g/liter). Using alternative nutrients, sugar analogs, and inhibitors we observed that the accumulation of total GT pp is dependent upon both hexose phosphate metabolism and the interaction of substrate with the GT. The role(s) of oligosaccharide biosynthesis, protein synthesis, and the transport process itself in the Glc deprivation-induced accumulation of GT pp were examined. The appearance of the Mr 42,000 GT pp but not the Mr 55,000 GT pp was dependent upon protein synthesis. The Glc deprivation-induced accumulation of GT pp is reversible upon refeeding with Glc (4 g/liter, 12 h). This reversal was dependent upon protein synthesis. The electrophoretic mobility of the Mr 42,000 GT pp is similar to the GT pp observed after tunicamycin treatment. The Mr 55,000 but not the Mr 42,000 GT pp binds specifically to agarose-bound wheat germ agglutinin and is sensitive to endoglycosidase F digestion. Oligosaccharide-stripped GT pp and the Mr 42,000 GT pp have the same Mr. The results suggest that the accumulation of total GT pp induced by Glc deprivation is partially independent of the effect of Glc deprivation on glycoprotein biogenesis. The appearance of the Mr 42,000 GT pp with aglyco characteristics is the result of the latter. The accumulation of total GT pp, however, is the result of a specialized and sensitive adaptation of the cell to Glc deprivation. The GT pp synthesized during chronic Glc deprivation has an Mr of 42,000; fed cells synthesize the Mr 55,000 GT pp. Neither the level of in vitro translatable GT mRNA nor the rate of GT pp synthesis are increased by Glc deprivation.(ABSTRACT TRUNCATED AT 400 WORDS)

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Cell Membrane / metabolism
  • Cells, Cultured
  • Cycloheximide / pharmacology
  • Fibroblasts / metabolism
  • Glucose / metabolism*
  • Glucose / pharmacology
  • Kinetics
  • Mice
  • Molecular Weight
  • Monosaccharide Transport Proteins / metabolism*
  • Protein Biosynthesis / drug effects

Substances

  • Monosaccharide Transport Proteins
  • Cycloheximide
  • Glucose