Bonding Mechanical Properties between SMA Fiber and ECC Matrix under Direct Pullout Loads

Materials (Basel). 2023 Mar 28;16(7):2672. doi: 10.3390/ma16072672.

Abstract

SMAF-ECC material composed of shape memory alloy fiber (SMAF) and engineered cementitious composite (ECC) has good bending and tensile properties, as well as good crack self-healing ability, energy consumption, and self-centering ability. The bond behavior between fiber and matrix is crucial to the effective utilization of the superelasticity of SMAF. The experimental study considered three variables: SMA fiber diameter, fiber end shape, and bond length. The pullout stress-strain curve of SMAF was obtained, and the maximum pullout stress, maximum bond stress, and fiber utilization rate were analyzed. Compared with the straight end and the hook end, the maximum pullout stress of the specimen using the knotted end SMAF is above 900 MPa, the fiber undergoes martensitic transformation, and the fiber utilization rate is above 80%, indicating that the setting of the knotted end can give full play to the superelasticity of the SMAF. Within the effective bond length range, increasing the bond length can increase the maximum anchorage force of the knotted end SMAF. Increasing the fiber diameter can increase the maximum pullout stress and maximum anchoring force of the knotted end SMAF but reduce the utilization rate of SMA fiber. This study provides a reliable theoretical basis for the bonding properties between SMAF and ECC.

Keywords: bonding performance; engineered cementitious composites; shape memory alloy fiber; superelasticity.