Sliding friction on ice

J Chem Phys. 2023 May 7;158(17):174702. doi: 10.1063/5.0147524.

Abstract

We study the friction when rectangular blocks made from rubber, polyethylene, and silica glass are sliding on ice surfaces at different temperatures ranging from -40 to 0 °C, and sliding speeds ranging from 3 μm/s to 1 cm s-1. We consider a winter tire rubber compound both in the form of a compact block and as a foam with ∼10% void volume. We find that both rubber compounds exhibit a similar friction on ice for all studied temperatures. As in a previous study at low temperatures and low sliding speeds, we propose that an important contribution to the friction force is due to slip between the ice surface and ice fragments attached to the rubber surface. At temperatures around 0 °C (or for high enough sliding speeds), a thin pre-melted water film will occur at the rubber-ice interface, and the contribution to the friction from shearing the area of real contact is small. In this case, the dominant contribution to the friction force is due to viscoelastic deformations of the rubber by the ice asperities. The sliding friction for polyethylene (PE) and silica glass (SG) blocks on ice differs strongly from that of rubber. The friction coefficient for PE is ∼0.04-0.15 and is relatively weakly velocity dependent except close to the ice melting temperature where the friction coefficient increases toward low sliding speeds. Silica glass exhibits a similarly low friction as PE for T > -10 °C but very large friction coefficients (of order unity) at low temperatures. For both PE and SG, unless the ice track is very smooth, the friction force depends on the position x along the sliding track. This is due to bumps on the ice surface, which are sheared off by the elastically stiff PE and SG blocks, resulting in a plowing-type of contribution to the friction force. This results in friction coefficients, which locally can be very large ∼1, and visual inspection of the ice surface after the sliding acts show ice wear particles (white powder) in regions where ice bumps occur. Similar effects can be expected for rubber blocks below the rubber glass transition temperature, and the rubber is in the (elastically stiff) glassy state.