Decoding neural patterns for the processing of fearful faces under different visual awareness conditions: A multivariate pattern analysis

Psychophysiology. 2023 Nov;60(11):e14368. doi: 10.1111/psyp.14368. Epub 2023 Jun 16.

Abstract

Previous studies have provided mixed findings regarding the nonconscious processing of fearful faces. Here, we used multivariate pattern analysis on electroencephalography data from three backward masking experiments to examine the processing of fearful faces under different visual awareness conditions. Three groups of participants were shown pairs of face images presented very briefly (for 16 ms) or for sufficiently long (for 266 ms), and completed tasks where the faces were either relevant to the experimental task (Experiment 1) or not (Experiments 2 and 3). Three main decoding analyses were performed. First, in the visual awareness decoding, the visibility of the faces, and hence participants' awareness of them, was maximally decodable in three time windows: 158-168 ms, 235-260 ms and 400-600 ms where the earlier neural patterns were generalized to the later stage activity. Second, we found that the spatial location of a fearful face in the face pairs was decodable, however only when the faces were consciously seen and task-relevant. Finally, we successfully decoded distinct neural patterns associated with the fearful-face-present conditions, compared to the fearful-face-absent conditions, and these patterns were decodable during both short and long presentations of the faces. Together, our results suggest that, while the processing of the spatial location of fearful faces requires awareness and task-relevancy, the mere presence of fearful faces can be processed even when visual awareness is highly restricted.

Keywords: EEG; awareness; fearful faces; multivariate pattern analysis; visual processes.