A Theory of Mental Frameworks

Front Psychol. 2023 Jul 20:14:1220664. doi: 10.3389/fpsyg.2023.1220664. eCollection 2023.

Abstract

Problem-solving skills are highly valued in modern society and are often touted as core elements of school mission statements, desirable traits for job applicants, and as some of the most complex thinking that the brain is capable of executing. While learning to problem-solve is a goal of education, and many strategies, methodologies, and activities exist to help teachers guide the development of these skills, there are few formal curriculum structures or broader frameworks that guide teachers toward the achievement of this educational objective. Problem-solving skills have been called "higher order cognitive functions" in cognitive neuroscience as they involve multiple complex networks in the brain, rely on constant rehearsal, and often take years to form. Children of all ages employ problem solving, from a newborn seeking out food to children learning in school settings, or adults tackling real-world conflicts. These skills are usually considered the end product of a good education when in fact, in order to be developed they comprise an ongoing process of learning. "Ways of thinking" have been studied by philosophers and neuroscientists alike, to pinpoint cognitive preferences for problem solving approaches that develop from exposure to distinct models, derived from and resulting in certain heuristics used by learners. This new theory paper suggests a novel understanding of the brain's approach to problem solving that structures existing problem-solving frameworks into an organized design. The authors surveyed problem-solving frameworks from business administration, design, engineering, philosophy, psychology, education, neuroscience and other learning sciences to assess their differences and similarities. This review lead to an appreciation that different problem-solving frameworks from different fields respond more or less accurately and efficiently depending on the kinds of problems being tackled, leading to our conclusion that a wider range of frameworks may help individuals approach more varied problems across fields, and that such frameworks can be organized in school curriculum. This paper proposes that explicit instruction of "mental frameworks" may help organize and formalize the instruction of thinking skills that underpin problem-solving-and by extension-that the more such models a person learns, the more tools they will have for future complex problem-solving. To begin, this paper explains the theoretical underpinnings of the mental frameworks concept, then explores some existing mental frameworks which are applicable to all age groups and subject areas. The paper concludes with a list of five limitations to this proposal and pairs them with counter-balancing benefits.

Keywords: critical thinking; higher order cognitive functions; learning how to learn; mental frameworks; mental schemata; mind-brain-education; problem-solving.