Ideal plasticity and shape memory of nanolamellar high-entropy alloys

Sci Adv. 2023 Oct 13;9(41):eadi5817. doi: 10.1126/sciadv.adi5817. Epub 2023 Oct 13.

Abstract

Understanding the relationship among elemental compositions, nanolamellar microstructures, and mechanical properties enables the rational design of high-entropy alloys (HEAs). Here, we construct nanolamellar AlxCoCuFeNi HEAs with alternating high- and low-Al concentration layers and explore their mechanical properties using a combination of molecular dynamic simulation and density functional theory calculation. Our results show that the HEAs with nanolamellar structures exhibit ideal plastic behavior during uniaxial tensile loading, a feature not observed in homogeneous HEAs. This remarkable ideal plasticity is attributed to the unique deformation mechanisms of phase transformation coupled with dislocation nucleation and propagation in the high-Al concentration layers and the confinement and slip-blocking effect of the low-Al concentration layers. Unexpectedly, this ideal plasticity is fully reversible upon unloading, leading to a remarkable shape memory effect. Our work highlights the importance of nanolamellar structures in controlling the mechanical and functional properties of HEAs and presents a fascinating route for the design of HEAs for both functional and structural applications.