A potent MAPK13-14 inhibitor prevents airway inflammation and mucus production

Am J Physiol Lung Cell Mol Physiol. 2023 Dec 1;325(6):L726-L740. doi: 10.1152/ajplung.00183.2023. Epub 2023 Oct 17.

Abstract

Common respiratory diseases continue to represent a major public health problem, and much of the morbidity and mortality is due to airway inflammation and mucus production. Previous studies indicated a role for mitogen-activated protein kinase 14 (MAPK14) in this type of disease, but clinical trials are unsuccessful to date. Our previous work identified a related but distinct kinase known as MAPK13 that is activated in respiratory airway diseases and is required for mucus production in human cell-culture models. Support for MAPK13 function in these models came from effectiveness of MAPK13 versus MAPK14 gene-knockdown and from first-generation MAPK13-14 inhibitors. However, these first-generation inhibitors were incompletely optimized for blocking activity and were untested in vivo. Here we report the next generation and selection of a potent MAPK13-14 inhibitor (designated NuP-3) that more effectively downregulates type-2 cytokine-stimulated mucus production in air-liquid interface and organoid cultures of human airway epithelial cells. We also show that NuP-3 treatment prevents respiratory airway inflammation and mucus production in new minipig models of airway disease triggered by type-2 cytokine challenge or respiratory viral infection. The results thereby provide the next advance in developing a small-molecule kinase inhibitor to address key features of respiratory disease.NEW & NOTEWORTHY This study describes the discovery of a potent mitogen-activated protein kinase 13-14 (MAPK13-14) inhibitor and its effectiveness in models of respiratory airway disease. The findings thereby provide a scheme for pathogenesis and therapy of lung diseases [e.g., asthma, chronic obstructive pulmonary disease (COPD), Covid-19, postviral, and allergic respiratory disease] and related conditions that implicate MAPK13-14 function. The findings also refine a hypothesis for epithelial and immune cell functions in respiratory disease that features MAPK13 as a possible component of this disease process.

Keywords: asthma; chronic obstructive pulmonary disease (COPD); drug discovery; minipig model; respiratory viral infection.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, N.I.H., Extramural
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Animals
  • Cytokines / metabolism
  • Humans
  • Inflammation / drug therapy
  • Inflammation / metabolism
  • Mitogen-Activated Protein Kinase 13 / metabolism
  • Mitogen-Activated Protein Kinase 14* / metabolism
  • Mucus / metabolism
  • Pulmonary Disease, Chronic Obstructive* / metabolism
  • Swine
  • Swine, Miniature / metabolism

Substances

  • Mitogen-Activated Protein Kinase 14
  • Cytokines
  • Mitogen-Activated Protein Kinase 13