Postprandial glycemic and lipidemic effects of black rice anthocyanin extract fortification in foods of varying macronutrient compositions and matrices

NPJ Sci Food. 2023 Nov 1;7(1):59. doi: 10.1038/s41538-023-00233-y.

Abstract

Anthocyanin (ACN) fortification of commonly consumed foods is significant as a dietary strategy against the development of metabolic complications by delivering ACNs at high doses. However, its bioactivity and translated metabolic effects in the presence of varying food matrices and macro-constituents is particularly unclear. This end-to-end study investigates the metabolic effects of black rice ACN extract (BRAE) fortification-from in-vitro enzyme inhibitory activities and digestibility, to downstream in vivo impacts on GI, postprandial glycemia and lipidemia. The in vivo effects were investigated in two separate crossover randomised controlled trials (RCT) of 24 healthy participants each-the first RCT determined the postprandial blood glucose, insulin, and ACN bioavailability to a starch-rich single food over 2 h, while the second RCT determined the postprandial blood glucose, insulin, lipid panel, and lipoprotein particles and subfractions to a starch- and fat-rich composite meal over 4 h. In-vitro findings confirmed the inhibitory activities of major black rice ACNs on carbohydrases (p = 0.0004), lipases (p = 0.0002), and starch digestibility (p < 0.0001). in vivo, a 27-point mean GI reduction of wheat bread was observed with BRAE fortification, despite a non-significant attenuation in postprandial glycemia. Conversely, there were no differences in postprandial glycemia when fortified bread was consumed as a composite meal, but acute lipid profiles were altered: (1) improved plasma HDL-c, ([0.0140 mmol/L, 95% CI: (0.00639, 0.0216)], p = 0.0028), Apo-A1 ([0.0296 mmol/L, 95% CI: (0.00757, 0.0515)], p = 0.0203), and Apo-B ([0.00880 mmol/L, 95% CI: (0.00243, 0.0152)], p = 0.0185), (2) modified LDL and HDL subfractions (p < 0.05), and (3) remodelled lipid distributions in HDL and LDL particles. This end-to-end study indicates the potential of ACN fortification in GI reduction and modulating postprandial lipoprotein profiles to starch- and fat-rich composite meals.